Автоматизированная система учета энергоресурсов предприятия. Создание систем учета энергоресурсов


В статье рассматриваются аспекты внедрения автоматизированных сис­тем учета на основе построенной АСКУЭ на базе АСУ и диспетчеризации АСУД‑248 производства НПО «Текон-Автоматика».

Одно из основных направлений энергетической стратегии России - способность сферы экономики эффективно использовать энергоресурсы, предотвращать нерациональные затраты на внутреннее энергообеспечение и дефицитность топливно-энергетических балансов на федеральном, региональном и муниципальном уровнях .

Актуальность и особая значимость этих вопросов для обеспечения устойчивого развития общества в целом определяют необходимость их глубокой и детальной проработки на методологическом и практическом уровнях.

Доминирующим фактором нерациональных затрат являются потери, неизбежно возникающие на этапах транспортировки энергии от поставщика к потребителю.

Превращение энергии в дорогой товар выдвигает качественно новые требования к измерению и учету этого товара.

Установка приборов учета (ПУ), безусловно, является необходимым средством повышения достоверности процесса учета в целом. Однако приборы учета, рассредоточенные территориально, не позволяют вести мониторинг текущих показателей и в то же время контролировать работу, обеспечить одновременный съем показаний и производить обработку полученных данных. В лучшем случае возможен лишь ежемесячный обход объектов учета с выполнением полуавтоматического сбора накопленных за отчетный период данных, что требует неоправданных (а порой и непосильных) затрат со стороны эксплуатирующей организации.

В связи с этим актуальной является реализация системы, которая позволила бы объединить локальные узлы учета (ЛУУ) для создания единого измерительно-информационного пространства для единовременного, непрерывного, автоматического контроля над технологическими процессами генерации, транспортировки и потребления энергоресурсов, а также организации коммерческих расчетов между поставщиками и потребителями ресурсов .

Сама автоматизированная система коммерческого учета энергоресурсов (АСКУЭ) в широком смысле представляет собой не только систему учета электропотребления, но и учет теплоносителя в сетях горячего водоснабжения (ГВС), отопления, а также учет расхода холодной воды (ХВС). В статье рассматриваются аспекты внедрения автоматизированных систем учета на основе построенной АСКУЭ на базе автоматизированной системы управления и диспетчеризации АСУД-248 производства НПО «Текон-Автоматика» .

Модель АСКУЭ

Как уже было отмечено в предыдущей статье , архитектуру АСКУЭ удобно рассматривать с точки зрения трехуровневой модели:

1. Уровень датчиков.

2. Уровень среды передачи данных.

3. Уровень серверов (ПК).

С точки зрения передачи данных основной информационный поток идет с первого на третий уровень.

Первый уровень объединяет ЛУУ, выполняющие первичную обработку информации (параметров расхода тепла, воды, электричества, газа и т.п.). На данном уровне выделены ПУ с импульсным выходом и ПУ с возможностью взаимодействия через интерфейсы RS-232, RS-485. Это позволяет полностью охватить как общедомовой учет, так и задачи поквартирного учета. Как правило, все водосчетчики (а также другие типы ПУ) имеют импульсный выход, а подавляющее большинство общедомовых теплосчетчиков поддерживают хорошо известный интерфейс RS-232.

Второй - определяет канал, форматы информационных обменов, способ передачи данных ПУ.

На данном уровне располагается оборудование АСУД-248, выполняющее функции устройств согласования и передачи данных (УСПД) с ПУ - это концентратор цифровых сигналов (КЦС), обеспечивающий взаимодействие по интерфейсу RS-232/485; концентратор измерителей расхода (КИР), обеспечивающий работу с импульсными ПУ.

Третий уровень совмещает в себе средства хранения, обработки и анализа данных ПУ. В задачи этого уровня входит предоставление пользователям АСКУЭ максимально объективной информации о процессах потребления энергоресурсов как отдельным объектом, так и рассматриваемой инфраструктурой в целом.

На данном уровне располагаются программные модули АСУД-248, решающие указанные задачи.

Создание общей базы данных учета энергоресурсов района

В силу того что структура районных управляющих организаций (УО) состоит из нескольких ОДС, для удобства проведения анализа данных учета энергоресурсов целесообразна организация единого сервера сбора данных (ЕССД) в рамках района. Территориально ЕССД может располагаться на территории УО, а архивы ПУ из базы данных (БД) ОДС реплицировались бы по каналам передачи данных ОДС - УО.

Под репликацией БД (от англ. replication - копирование, дублирование) понимается процесс приведения неодинаковых состояний двух и более БД со схожей структурой в одинаковое состояние.

Реализация механизма репликации локальных БД ОДС позволяет получить следующие преимущества:

Выделение более производительного ПК, нежели ПК ОДС, для обработки учетной информации;

Хранение в одном месте данных нескольких ОДС района;

Выполнение дублирования (резервирования) учетных данных;

Повышение скорости обработки информации.

Исходя из направления информационных потоков АСКУЭ, предполагается передача учетной информации только с ОДС в ЕССД. Частота передачи определяется дискретностью представления данных АСКУЭ и составляет период не менее 1 часа для архивных и не менее 10 минут для мгновенных значений ПУ. Канал связи между ОДС и ЕССД разумно строить на технологии, обеспечивающей создание локальной сети компьютеров (оптика, радиоканал и т.п.), при этом необходимо предусмотреть возможность подключения отдельных ОДС по модемным линиям. Как правило, компьютерные каналы ОДС - УО уже существуют.

Для организации ЕССД необходимо реализовать однонаправленную, вероятностную схему репликации.

Процесс репликации организован по следующему принципу:

RServer периодически опрашивает локальные БД ОДС;

RClient формирует файл с новыми данными ПУ, полученными с момента последней репликации;

RServer обрабатывает файл, вносит изменения в серверную БД.

Окно приложения RServer представлено на рис. 1. В окне показаны зарегистрированные объекты репликации (ОДС), состояние канала ОДС - ЕССД, а также время последней репликации.

Рис. 1. Главное окно приложения RServer


Для снижения нагрузки на канал передачи данных программы RClient и RServer реализуют механизм потокового сжатия данных.

Взаимодействие с внешними информационными системами


Под взаимодействием будем понимать передачу (или, в общем случае, предоставление) данных АСКУЭ для их последующей обработки (производства начислений, контроля, анализа) сторонними программными средствами.
Возможные участники информационного взаимодействия представлены в табл. 1.

Таблица 1. Участники информационного взаимодействия с АСКУЭ




Были рассмотрены несколько вариантов представления данных учета энергоресурсов:
- генерации и передачи отчетов за определенный период в установленной форме;
- прямой доступ к БД АСКУЭ;
- реализация надстройки над БД АСКУЭ, поддерживающей унифицированный протокол.

В первом случае отчеты формируются оператором АСКУЭ с помощью программы ASUDBase, входящей в состав специализированного программного обеспечения АСУД-248 в соответствии с установленным регламентом взаимодействия.

В отчетной форме на бумажном или электронном носителе информация предоставляется в адрес ЕИРЦ, энергоснабжающих (энергосбытовых) и водоснабжающих организаций, контролирующих органов.

Следует отметить, что сам процесс передачи электронного файла нормативными документами не уточняется. Это фактически приводит к различным схемам пересылки файла от передачи из рук в руки, отправке по электронной почте, до применения серверов ftp, samba и т.п. Ни о какой проверке того, что файл является именно тем файлом, который был сформирован оператором АСКУЭ, речи не идет. Устранить указанную несогласованность можно с помощью введения электронной цифровой подписи в механизм взаимодействия АСКУЭ - ЕИРЦ. Данная схема реализуема на основе теории открытых ключей . После формирования файла оператор АСКУЭ подписывает его своим секретным ключом, а уполномоченный представитель ЕИРЦ перед производством расчетов проверяет целостность данных с помощью открытого ключа.

В процессе внедрения АСКУЭ приходилось также сталкиваться с просьбами о предоставлении прямого доступа к БД АСКУЭ для постоянного контроля и обновления данных ПУ сторонним программным обеспечением.

Данный способ информационного взаимодействия следует применять с максимальной осторожностью, уведомив заказчика о возможных последствиях, поскольку неверная работа стороннего приложения может привести к неработоспособности АСКУЭ в целом.

В то же время сотрудниками «Текон-Автоматика» выполняется надстройка над БД АСКУЭ, реализующая унифицированный протокол информационного взаимодействия, в виде OPC-сервера. Стандарт OPC позволяет внешним информационным системам, в том числе в режиме реального времени, получать информацию о состоянии ПУ.

Вопросы информационной безопасности


Построение любой информационно-вычислительной системы должно в настоящее время сопровождаться проработкой вопросов, связанных с обеспечением информационной безопасности обрабатываемых данных. Под информационной безопасностью будем понимать защищенность информации от следующих факторов :
- преднамеренных воздействий, нарушающих целостность сообщений, при которых мотивом нарушения конфиденциальности является намерение несанкционированного чтения, модификации, перехвата, навязывания законному получателю фальшивых сообщений и т. п.
- случайных воздействий, которые предполагают сбой аппаратуры, ошибки ПО, помехи в канале связи.

Одним из важнейших аспектов проблемы обеспечения безопасности информационной системы является определение, анализ и классификация возможных угроз. Перечень угроз, оценка вероятности их реализации - основа для проведения анализа риска и формулирования требований к системе защиты.

Рассматривая информационные потоки АСКУЭ, можно выделить места, уязвимые с точки зрения информационной безопасности.

Проанализируем следующие участки передачи данных:
- от первичного преобразователя до ПУ;
- от ПУ до концентратора;
- от концентратора до ПК ОДС;
- от ПК ОДС до сервера сбора информации;
- от сервера до внешних пользователей системы.

Участок 1. Возможные угрозы на данном этапе связаны со следующими моментами:
- искажением информации, поступившей с первичных преобразователей на ПУ (обрыв проводов, неверная установка и т.п.);
- в силу ценности частей узлов учета (термометров, манометров и т.п.) возможно их преднамеренное хищение (уничтожение);
- искажение настроек самого ПУ.

Решением проблемы является ограничение и жесткий контроль доступа в места установки ПУ. Как правило, существует возможность ограничить вход не только в подвал здания, но и оградить с помощью решеток непосредственное место установки ПУ, устраняя тем самым возможный доступ людей, имеющих право на вход в подвал, но не должных вмешиваться в работу ПУ. Следует отметить, что от 60 до 80 % угроз для любой информационной системы связаны с действиями действующих или бывших сотрудников организации. Необходимо в обязательном порядке производить опечатывание ПУ и блокировать его служебные функции для предотвращения доступа к системным настройкам.

Участок 2. Исходя из того, что концентратор предполагается устанавливать в непосредственной близости от ПУ, этот пункт может быть отнесен к рассмотренному выше.

В случае воздушной прокладки кабельных трасс и отсутствия в домах контуров защитного заземления возможен выход из строя концентратора вследствие грозы. Тем не менее даже при попадании грозы в линию предусмотренная схема гальванической развязки концентратора предотвратит негативные последствия для ПУ.

При подключении квартирных приборов учета концентратор устанавливается в распределительном щитке. И хотя несанкционированный доступ к концентратору приведет к аварийному сигналу на ПК диспетчера, допускается возможность искажения информации злоумышленником. В силу этого необходимо предусмотреть контрольные сверки показаний конечных ПУ с информацией в системе АСКУЭ с интервалом не реже 1 раза в год, а в случаях сбоя - непосредственно по каждому случаю.

Участок 3. Может быть наиболее уязвим с точки зрения информационной безопасности в силу своей протяженности. Однако искажение данных можно предотвратить, применяя при передаче контрольные суммы, а конфиденциальность информации (если это действительно необходимо) путем применения в ПО концентраторов криптографических алгоритмов, основанных, например, на псевдослучайных последовательностях.

Участок 4. Целостность и сохранность информации, передаваемой на данном участке, может быть обеспечена применением стандартных средств. Например, можно программно реализовать в приложениях поддержку протокола SSL или применить другие программно-аппаратные средства защиты информации при передаче ее по открытым компьютерным сетям . Кроме того, должен быть обеспечен соответствующий уровень безопасности и самого ПК диспетчера ОДС, с разграничением прав доступа и т.п.

По возможности не следует объединять ПК ОДС на основе открытых сетей общего пользования (локальные городские сети доступа в Интернет) в силу высокой вирусной активности и невысокой надежности данных сетей. В противном случае рекомендуется на базе оборудования провайдера связи организация VLAN (Virtual LAN - локальной виртуальной сети), объединяющая аппаратные средства АСКУЭ в независимую среду информационного обмена.

Участок 5. В целом полностью аналогичен участку 4, за исключением того, что информационный обмен с большей вероятностью подразумевается изначально по открытым каналам связи (возможно, и с использованием Интернета), что ставит повышенные требования к идентификации, аутентификации и авторизации удаленных пользователей. Дополнительно следует максимально ограничить список доступных им функций по управлению системой.

Целесообразным считается применение VPN-решений (Virtual Private Network - виртуальные частные сети) для обеспечения должного уровня информационной безопасности.

В заключение следует отметить важный факт: устойчивость всей системы информационной защиты определяется устойчивостью ее слабейшего звена. Отсюда следует, что защита информации в вычислительных системах может осуществляться лишь в комплексе; отдельные меры не будут иметь смысла.

Порядок ввода АСКУЭ в промышленную эксплуатацию


Жизненный цикл любой автоматизированной информационной системы состоит из 5 основных стадий :
- разработка или приобретение готовой системы;
- внедрение системы;
- сопровождение программного обеспечения;
- промышленная эксплуатация системы;
- демонтаж системы.

Стадии жизненного цикла системы перекрываются, как показано на рис. 2, а продолжительность каждой стадии в общем случае зависит от многих факторов. Из рисунка следует то, что система должна обслужиться сразу после начала эксплуатации.

Рис. 2. Стадии жизненного цикла автоматизированных систем


Процесс ввода АСКУЭ в промышленную эксплуатацию на конкретном объекте можно разбить на несколько этапов в соответствии с рис. 3.

Рис. 3. Этапы ввода АСКУЭ в промышленную эксплуатацию


Помимо указанных мероприятий, каждая устанавливаемая АСКУЭ должна быть проверена уполномоченной организацией по месту установки. В качестве организации, проводящей поверку, может выступать Всероссийский научно-исследовательский институт метрологической службы (ВНИИМС) или ФГУ «Ростест-Москва».

Процедура поверки включает в себя сбор и проверку необходимой документации, а также проведение контрольно-измерительных мероприятий, направленных на выявления ошибок функционирования АСКУЭ. Ошибки могут быть связаны как с неправильным монтажом АСКУЭ, так и с некорректной работой ПУ.

В случае успешного завершения процедуры поверки, выдается свидетельство. В противном случае, при обнаружении недостатков в работе системы, поверяющая организация указывает на них и назначает дату повторного проведения процедуры.

Только после этого АСКУЭ может законно выполнять функции коммерческого учета. Без свидетельства о поверке АСКУЭ фактически может использоваться лишь как система технологического контроля и мониторинга состояния объекта.

Фрагмент статьи в PDF


Интеграция АСКУЭ в единую общегородскую информационную систему


Текущие тенденции развития локальных специализированных информационных систем предполагают их интеграцию в общегородскую структуру мониторинга и управления.

Развитие информационных технологий и организация высокоскоростных каналов передачи данных позволили рассматривать возможность создания единой общегородской информационной системы (ЕОИС).

В задачу ЕОИС входит объединение всех городских владельцев и потребителей информации в единую систему обмена данными, что позволит:
- предоставить префектам и соответствующим службам города в реальных масштабах времени интегрированную информацию в виде электронных карт, схем, таблиц о текущей обстановке в ЖКХ, что позволит повысить эффективность управления городским хозяйством;
- объединить в едином информационном пространстве все предприятия ЖКХ;
- снизить затраты на эксплуатацию и ремонт коммунальной инфраструктуры города;
- создать в ЖКХ новые интеллектуально-насыщенные рабочие места;
- свести к минимуму неэлектронный обмен данными;
- предоставить населению доступ к информационным источникам;
- обеспечить устойчивость работы служб ЖКХ.

Проработка концепции создания ЕОИС началась в конце 1990-х годов для обеспечения координации действий городского управления .

Высокая социальная и экономическая значимость информации АСКУЭ указывает на необходимость создания общегородского центра обработки данных ПУ. В задачу этой единой автоматизированной системы учета и потребления энергоресурсов (АСКУПЭ) входит интеграция данных локальных АСКУЭ различных производителей и предоставления их в пространстве ЕОИС.

Для взаимодействия различных АСКУЭ с АСКУПЭ необходима выработка общего протокола и регламента информационного взаимодействия. Это может быть:
- межбазовый обмен данными;
- разработка собственного протокола обмена данными;
- использование существующих протоколов.

Поскольку прямой доступ к БД рассматривается специалистами как крайне нежелательный, разработка собственного формата обычно является вынужденной мерой и может затруднить добавление в систему нового оборудования, желательно использование общепринятого стандарта. В силу того что на уровне АСКУПЭ подразумевается наличие высококвалифицированного обслуживающего персонала, рекомендуется строить взаимодействие на основе стандарта OPC.

Технология OPC (OLE for Process Control) разрабатывалась с учетом взаимодействия гетерогенных (неоднородных) систем . Согласно концепции OPC, оборудование нижнего уровня подключается к системе верхнего уровня (OPC-клиент) через программный шлюз (OPC-сервер), имеющий стандартизированный протокол обмена данными. При таком подходе задача подключения нового оборудования любого производителя к системе сводится к локальной задаче настройки шлюза OPC-клиент / OPC-сервер.

Наличие OPC-сервера является гарантией совместимости любого устройства с любой современной SCADA-системой, которая может быть использована на верхнем уровне АСКУПЭ.

Литература

1. Энергетическая стратегия России на период до 2020 года. Утв. распоряжением Правительства РФ № 1234-р: [принят от 28.03.2003].
2. Иванов А.С. Внедрение автоматизированных систем учета энергоресурсов в жилищно-коммунальном хозяйстве // Вестник поморского университета. Серия «Естественные и точные науки». Архангельск: ПГУ им. Ломоносова, 2006. С. 179-182.
3. Иванов А.С., Тарасенков М.А., Лукичев А.Ю., Серов И.В., Грудин Д.В. Построение системы АСКУЭ на базе автоматизированной системы диспетчеризации АСУД-248 // Информатизация и системы управления в промышленности. М., 2006. С. 4-13.
4. ASUDBase (программа интерпретации учетных данных): Свидетельство об официальной регистрации программы для ЭВМ № 2006612658 РФ / Иванов А.С. (РФ); .
5. Романец Ю.В., Тимофеев П.А., Шаньгин В.Ф. Защита информации в компьютерных системах и сетях / Под ред. В.Ф.Шаньгина. М.: Радио и связь, 1999. 328 с.
6. Зима В.М. и др. Безопасность глобальных сетевых технологий. СПб.: BHV, 2001. 320 с.
7. SSL 3.0 Specification / http://wp.netscape.com/eng/ssl3
8. Stunnel ‑ Universal SSL Wrapper / http://www.stunnel.org
9. Ефимов Г. Жизненный цикл информационных систем // Сетевой: эл. журн. ЗАО «Издательский дом мировой периодики», 2001. № 2; http://www.setevoi.ru/cgi-bin/text.pl/magazines/2001/2/44
10. Проект «Информационная Сеть жилищно-коммунального хозяйства города»: Предварительное ТЭО. 3-я ред. М., Зеленоград, 1998. 32 с.
11. Росаткевич Г.К., Краснобаев В.В. Единая автоматизированная система диспетчерского контроля и управления городским хозяйством на базе московской волоконно-оптической сети // Энергосбережение. М.: АВОК, 1999. № 5;
www.abok.ru/for_spec/articles.php?nid=211
12. Мартынов Ю.И. Применение SCADA-систем для построения программного обеспечения АСУ энергетикой промышленных предприятий // Проблемы и перспективы прецизионной техники и управления в машиностроении / ИПТМУ РАН. Саратов: СГТУ, 2002. С. 57-5

Автоматизировать сложный учет энергоресурсов , их расход, выгодно тем предприятиям, которые предоставляют услуги энергообеспечения, чтобы дистанционно контролировать расход, обеспечивать денежный расчет с клиентами за предоставленную услугу и получать прозрачные отчеты. Услуга службы заключается в генерации и распределении энергии для пользователей.

Технический учет энергоресурсов информирует о расходе энергии на каждом предприятии, в отдельных его подразделениях и также на конкретном оборудовании, где требуется установка счетчиков. Системы автоматического учета энергоресурсов , которые синхронизированы с техническим учетом, позволяют в перспективе повышать энергоэффективность за счет энергосбережения. Постоянная экономия (от 15 до 30 процентов) повышает прибыль предприятия.

При сопоставлении и анализе полученной статистики легко обнаружить проблемные участки, где потребление существенно превышает норму. Таким образом, если параллельно автоматизировать учет потребления энергоресурсов и учет экономии энергоресурсов , то это поспособствует рациональному решению задачи последующей оптимизации потребления.

Типы систем автоматического учета энергоресурсов

Промышленность и коммунальные предприятия заинтересованы в установке учета энергоресурсов . Коммерческий учет энергоресурсов с высокой точностью измерений осуществляется с помощью специальных, организованных в системы, счетчиков автоматизированного учета энергоресурсов . Системы бывают разные, например, в зависимости от целевого рынка (розничный, оптовый рынок), что отражается уже в их названии.

  • Если АСКУЭ (автоматизированная система ) помогает контролировать расход энергоресурсов с учетом розничных цен, способствуя финансовым расчетам с предприятиями, занимающимися их сбытом;
  • то АИИС КУЭ (автоматизированная информационно-измерительная система коммерческого учета энергоресурсов ) нацелена на оптовый рынок и соответствует его требованиям. Эта система подлежит обязательной аттестации в контролирующем органе и регистрации в Госреестре.

Современные технологии не только усовершенствовали саму систему, но и ощутимо удешевили ее стоимость, расширяя круг потенциальных потребителей и, соответственно, сферы внедрения систем учета энергоресурсов .

  • АССД (автоматизированные системы сбора данных о потреблении энергоресурсов) предназначены как дополнительные приборы. Потребитель, у которого уже работают регистраторы или счетчики, может заказать установку такой системы. Однако в данном случае сам заказчик следит за функционированием и метрологией своего оборудования.
  • АСТУЭ (автоматизированные системы технического учета энергоресурсов) предназначена для внутреннего аудита и предполагает установку с заданной метрологией. Заказчик указывает нужные характеристики в техническом задании. Функционирование системы предприятия обеспечивают специальные службы, использующие современные технологии и каналы связи. Все необходимые данные автоматически собираются с приборов. В учет энергоресурсов входит объем производства, потребления и другие параметры.

Служба учета энергоресурсов оправдана простотой и доступностью регулярного получения высокоточных данных для систематического контроля расходов ресурсов с последующей их оптимизацией. Автоматизировать при грамотной организации учет энергоресурсов на энергоемком предприятии – путь к интенсивному повышению его эффективности, рентабельности и доходности. Постоянная экономия от внедрения системы обычно окупается за три квартала.

Автоматизировать учет потребления энергоресурсов стоит потому, что это минимизирует трудоемкость процесса расчетов. Электронная служба наиболее точно измеряет и фиксирует все важнейшие показатели, предоставляя без погрешностей массу дополнительной полезной информации.

  • Доступны фактические данные по счетчикам конкретных объектов и их группам (улица, населенный пункт, город, область, регион) за любой период, включая текущие, суточные, декадные, месячные, квартальные, годовые расходы и т.д.
  • Тщательно контролируется качество предоставляемых ресурсов.
  • Инспектируется текущее состояние приборов коммерческого учета энергоресурсов .
  • Осуществляется автоматический мониторинг состояния инженерных коммуникаций.
  • Немедленно выявляются случаи несанкционированного доступа к счетчикам.

Установка контролирующих приборов решает много задач, что служит весомым аргументом в пользу решения автоматизировать учетные процедуры.

Технические возможности автоматических систем учета энергоресурсов

Счетчики – многофункциональны, их установка упрощает сбор и хранение разнородных данных.

  1. С заданной регулярностью результаты собранных измерений автоматически передаются на главный сервер учета энергоресурсов.
  2. Вся собранная отчетность консервируется для продолжительного хранения в системе службы.
  3. Полученные показатели подвергаются анализу с целью обеспечения экономии.
  4. Несанкционированное потребление обнаруживается системой, что упреждает ущерб и локализует применение своевременных адресных мер.
  5. Приборы быстро обнаруживают аварийные участки, что минимизирует ущерб и позволяет оперативно реагировать на утечки.
  6. Для подключения или отключения конечных потребителей от ресурсной сети не нужно выезжать на место, поскольку автоматические процедуры технического и коммерческого учета энергоресурсов осуществляются удаленно.

Архитектура структуры учета энергоресурсов зависит от сформулированного заказчиком технического задания и количества подконтрольных объектов. Подотчетная территория предприятия оснащается автоматическими счетчиками, приборами , ведущими коммерческий учет энергоресурсов . Счетчики подключаются к многоуровневой иерархической структуре сбора, анализа и хранения информации.

Вся нужная достоверная информация автоматически упорядочивается в виде таблиц, графиков, балансовых отчетов и журналов происшествий, и через проводные и беспроводные каналы связи передается адресату.

Опыт показал, что установка счетчиков автоматического коммерческого учета потребления энергоресурсов снижает затраты службы. Экономия достигается путем комплексного учета энергоресурсов. Здесь важна оперативная реакция на факты хищения и аварийные утечки; лимитирование расхода и контроль пиковых нагрузок; расчет и установление оптимального тарифа, автоматическая выписка счетов абонентов, оптимизация оплаты труда; уменьшение количества неоплаченных счетов, рационализация потребления и минимизация технических затрат. Всего этого легче добиться, если автоматизировать коммерческий учет энергоресурсов . Суммарная экономия в год в среднем достигает 15% от объема потребления.

В чрезвычайных ситуациях , когда контролируемые показатели выходят за границы нормы, предусмотрена сигнализация. Внутри структуры поддерживается единое время для предупреждения сбоев и исключения разночтений.

УДК XXX. XXX. XX

К. т.н., доцент, ВГАВТ1
, ВГАВТ
, к. т.н., ВГАВТ
, д. т.н., профессор, ВГАВТ
, к. т.н., ВГАВТ

Автоматизированная система учета энергоресурсов.

Краткая аннотация

Существующие системы учета потребления энергоресурсов можно разделить на 2 группы – системы коммерческого учета и системы оперативного контроля и учета [например, 1,2]. Для первой группы требуется сертификация средств измерения, в связи с чем они имеют сравнительно высокую стоимость. Системы оперативного контроля и учета предназначены для получения достоверной информации о потреблении энергоресурсов, играющей важную роль при принятии обоснованных управленческих решений руководством предприятий и учреждений.

Подобная система под названием “САКУРА” (рис.1) была разработана для одного из корпусов Горьковского технического университета по заказу Нижегородского регионального центра энергосбережения (информация о системе опубликована НИЦЭ в без ссылок на разработчиков).

Рис.1 Заставка системы САКУРА.

Система предназначена для автоматизированного сбора и учета информации о потреблении энергоресурсов (электрической и тепловой энергии , тока, температуры, воды, газа и т. п.) в промышленных и административных зданиях.

В состав системы входят диспетчерский пульт (компьютер с программным комплексом), контроллер линии связи, устройства сбора и хранения информации (УСХИ), измерительные приборы (или датчики) с интерфейсом RS-485 (рис. 2). К линии RS-485 может быть подключено до 32 устройств (УСХИ и датчиков с интерфейсом RS-485, например счетчиков электрической энергии, тепловой энергии и т. п.). В свою очередь, к УСХИ может быть подключено до 64 датчиков с токовыми и импульсными выходами. Контроллер линии связи позволяет работать со вторым диспетчерским пультом через телефонный канал связи.

Рис.2. Структура системы автоматизированного сбора и учета информации о потреблении энергоресурсов.

Функциональные возможности системы.

Функции оперативного контроля:

Контроль в режиме реального времени любого из датчиков с диспетчерского пульта или с удаленного терминала по телефонной линии;

Представление в графическом виде планов здания с размещенными датчиками и их показаний.

Функции настройки:

Добавление новых датчиков или их исключение из системы;

Привязка датчиков к поэтажным планам здания;

Конфигурация УСХИ и настройка подключенных к нему датчиков.

Функции сбора и хранения информации:

Опрос всех устройств, включенных в сеть и чтение с них статистической информации за заданный промежуток времени;

Просмотр текущих показаний датчиков в режиме мониторинга с представлением их местоположения на поэтажных планах здания;

Сохранение собранной со всех датчиков информации.

Функции анализа:

Представление информации в табличном и графическом виде по любым видам потребляемых энергоресурсов за произвольный интервал времени;

Расчет обобщенных характеристик (суммарных, удельных значений параметров и т. п.).

Функции защиты информации :

Доступ возможен только при использовании пароля (два уровня – диспетчера и администратора).

Описание устройства сбора и хранения информации.

УСХИ служит для подключения датчиков не имеющих интерфейса RS-485. Это датчики с токовым выходом (датчики температуры, датчики тока и т. п.) и датчики с импульсным выходом (Счетчики воды и т. п.). К УСХИ можно подключить до 64 (функционально разбиты на 8 модулей по 8 датчиков, количество модулей импульсных и токовых датчиков – произвольное). Диапазон частот для импульсных входов – 0-200 Гц, входные сигналы токовых датчиков - 0-20 мА или 4-20 мА. Информация с датчиков хранится в блоке УСХИ с интервалом 30 мин в течении 10 последних суток.

Конструкция УСХИ – модульная (рис.3). На материнской плате размещена плата центрального процессора и восемь слотов для подключения модулей ввода информации с датчиков. Материнская плата с помощью ленточного кабеля соединена с платами клеммных соединителей для подключения кабелей датчиков. На них размещены 64 группы (по 3 штуки – корпус, +24В, сигнальный вход) клеммных соединителей.

Модули аналогового и импульсного ввода выполнены в виде отдельных плат, вставляемых в слоты. Каждый модуль имеет 8 каналов измерения. Каждая плата обслуживается собственным процессором. Программа, зашитая во внутреннюю память процессоров, обеспечивает измерение по 8 каналам и формирование массива полученных данных для передачи в центральный процессор. Связь с центральным процессором осуществляется по внутреннему последовательному каналу на скорости ________. Любой модуль (аналогового или импульсного ввода) может размещаться в произвольном слоте. Тип модуля и его адрес модуль центрального процессора определяет автоматически, никаких изменений в аппаратной части и программе УСХИ не требуется. Размер модуля ввода – 85*50 мм.

На плате центрального процессора УСХИ размещены 2 однокристальных микроЭВМ, энергонезависимая память, часы реального времени, сторожевой таймер и интерфейсы внутреннего последовательного канала и внешнего канала RS-485.

Первая ОМЭВМ обеспечивает сбор информации с модулей ввода и формирование массива данных за последние 10 суток с тридцатиминутным интервалом. Вторая ОМЭВМ обеспечивает подключение блока к каналу RS-485.

Рис.3. Устройство сбора и хранения информации

Контроллер линии связи позволяет осуществлять соединение компьютера с каналом связи RS-485 или телефонным модемом. Через канал связи RS-485 осуществляется сбор данных с контролируемых устройств и установленных датчиков. Второй канал предназначен для осуществления связи с удаленными устройствами посредством коммутируемой телефонной связи и модема. Для реализации удаленной сети (в другом здании, районе, городе) используются два контроллера связи, при этом к одному подключаются диспетчерский пульт, телефонный модем и локальные устройства сбора информации, ко второму подключается модем и устройства сбора информации.

Описание диспетчерского пульта.

Диспетчерский пульт (рис. 4) реализован с помощью программного комплекса “САКУРА” устанавливаемого на персональном компьютере. Данный программный комплекс для работы под операционной системой Windows 98 и выше. Компьютер должен иметь свободный COM порт для подключения контроллера линии связи.

Программный комплекс (ПК САКУРА) включает в свой состав систему сбора, хранения и визуализации данных и драйверы сопряжения с подключаемыми внешними устройствами. Одной из основных характеристик комплекса является его модульная структура, позволяющая легко наращивать функциональность установленной системы (подключение датчиков и устройств других фирм-производителей).

Большое внимание при разработке ПК САКУРА уделялось обеспечению гибкости системы и легкости внесения изменений в конфигурацию без необходимости модификации программы.

Рис. 4. Диспетчерский пульт системы.

Режим отображения поэтажного плана

Программа обеспечивает отображение информации об устройствах в 2-х видах – через окно дерева устройств, и через окно поэтажного плана. Дерево устройств отображает все устройства в системе (с учетом выбранной при старте организации); при этом устройства сгруппированы по типам измеряемого ресурса. Поэтажный план отображает устройства по их физическому месту расположения. Работа в режиме отображения поэтажного плана обеспечивает большую наглядность.

Рис. 5. Окно поэтажного плана.

Основным элементом данного окна (рис. 5) являются 3 закладки с планами подвала, первого этажа и второго этажа. Переключение между ними осуществляется щелчком мышью на закладке листа .

Под планом находится информация о комнате, по которой выполнен щелчок мышью: номер (или название), принадлежность организации и количество датчиков. Далее - название и тип находящихся в комнате датчиков. Область справа отведена под значения тока и температуры от датчиков в выбранной комнате (режим фонового мониторинга).

Разные типы датчиков отображены на плане цветными значками разной формы. Легенда (условные обозначения) располагается справа от плана. Основные операции над датчиками доступны через контекстное меню (щелчок правой кнопкой мыши на значке датчика). Указание мышью на значок устройства (без нажатия) отображает имя устройства (во всплывающей подсказке). Двойной щелчок по значку датчика запускает режим мониторинга.

Большая кнопка справа вверху служит для перехода в режим просмотра дерева устройств, кнопки под легендой доступны только в режиме администратора и служат для работы с комнатами (при начальной настройке системы) и включения режима перемещения устройств на карте.

Информация о комнатах (так же как и информация о датчиках) не является жестко "зашитой" в систему; она вводится на этапе конфигурирования системы и хранится в служебной базе данных программы, обеспечивая возможность изменения конфигурации.

Добавление устройств в систему

Добавление и удаление датчиков возможно только в режиме администратора; этот уровень доступа в систему защищен паролем. После ввода пароля в режиме просмотра дерева устройств появляются кнопки "Добавить устройство" и "Удалить устройство"(рис. 6)

Рис. 7. Окно добавления устройства

После заполнения формы нажатием кнопки ОК происходит добавление устройства в систему. В случае, если устройство подключается через блок УСХИ запускается программа настройки описаная далее. В системе предусмотренна возможность привязки и отображения устройств и датчиков на поэтажном плане здания.

Анализ статистики и построение графиков

Имеется возможноть просмотра данных с датчиков за выбранный период в табличной и графической форме. При этом помечаются интересующие датчики (рис. 8).

Рис. 9. Окно выбора периода.

Далее осуществляется выбор типа отображаемой информации. В зависимости от выбранного датчика (датчиков), их типа и запрошенного периода возможны варианты (выдавать показания в натуральном или денежном выражении и т. п.) При отсутствии данных за часть периода, система автоматически считает их с устройств.

Полученные результаты отоброжаются в окне запрошенных данных в табличной форме и на графике (рис.10).

Рис. 10. Окно запрошенных данных.

Анализ статистических данных.

Анализ данных производится с помощюь модуля расчета. Модуль расчета предназначен для расширения возможностей системы по обработке данных путем обеспечения расчета производных значений на основе имеющихся при обеспечении легкости модификации расчетных формул.

Встроенный вычислитель обеспечивает следующие возможности:

· вычисления по многострочным формулам.

· поддержка 4-х арифметических действий и возведения в степень ("^"), поддержка приоритетов вычисления и скобок.

· использование до 50-ти переменных и именованных констант.

· подстановка вместо имени датчика (точнее, первого слова имени) значения соответствующего показателя за выбранный период.

· подстановка вместо переменной "t" длины выбранного периода (в часах).

Формулы доступны для изменения (считываются из файла при старте программы). При работе в режиме администратора возможен режим отладки (рис. 11).

Рис. 12. Анализ: нормативная кривая энергопотребления.

Работа с датчиками имеющими токовый или импульсный выход.

Все датчики, имеющие токовый или импульсный выход, подключаются к УСХИ при этом максимальное количество, подключаемое к одному блоку, шестьдесят четыре. Количество блоков УСХИ для подключения не ограниченно. Настройка и калибровка подключенных датчиков осуществляется программным путем. Устанавливается тип датчика – аналоговый или импульсный. Далее для импульсных датчиков (рис. 13) производится калибровка. Выбирается канал к которому подключен датчик, вводится название датчика и задается цена одного импульса, дополнительный множитель, размерность измерений и если необходимо задаются пределы ограничений.

Рис. 14. Установка и калибровка аналогового датчика.

Преобразование значения осуществляются по уравнению прямой путем ввода значений в двух точках. Дополнительно предоставляется возможность ввода ограничений значений по максимуму и минимуму и по знаку. В режиме настройки предоставляется возможность просмотра значений и констант калибровки для всех подключенных датчиков.

В режиме опроса датчика подключенного к УСХИ осуществляется автоматическая установка связи с блоком и сбор информации со всех подключенных датчиков. Получаемые значения выводятся в информационном окне о комнате на общем плане здания (рис. 15), либо возможен вывод информации для одного датчика в специальном окошке (рис. 16).

Рис. 16. Просмотр значения выбранного датчика.

Работа с приборами, имеющими последовательный порт RS-485

На момент разработки комплекса заказчик определился с двумя устройствами поддерживающими канал RS-485 – электросчетчик “Микрон 3x” (рис. 17), завод Фрунзе (Н. Новгород) и теплосчетчик (рис. 18) фирмы Danfos (Швеция?). Данные устройства собирают и хранят статистические данные за сутки и месяц и имеют свои протоколы для осуществления связи. Для этих приборов были разработаны программы драйвера, которые позволяют оперативно считывать текущею информацию, настройки приборов и снимать статистические данные. При подключении новых приборов на основе предоставляемого протокола создается новый драйвер, который позволит легко интегрировать приборы в комплекс.

Рис. 18. Окно отображения текущей информации на электросчетчике.

Драйвера для приборов реализуют две основных функции. Работа в режиме мониторинга – производится постоянный опрос прибора с целью предоставления текущих даны и настроек прибора. Информация на компьютере отображается в специальных окошках на рисунке 17 представлено окно отображения текущей информации с электросчетчика, на рисунке 18 с теплосчетчика. Вторая функция – сбор статистических данных с приборов. При этом выводится информационное окно показывающее состояние чтения статистических данных.

В настоящее время система находится в опытной эксплуатации в 8 корпусе Нижегородского политехнического университета.

, “Сакура” - система мониторинга энергопотребления бюджетной организации. // Энергоэффективность: опыт, проблемы, решения, Н. Новгород, 2001. Вып.3. С.52­–57.

1 ВГАВТ, Нижний Новгород, ул. Нестерова, 5.
E-mail: *****@

Название на английском языке

Аннотаця на англ языке (до 10 строк)e.

Любое современное промышленное предприятие потребляет значительный объем энергоресурсов в разных формах. В том числе для обеспечения своей жизнедеятельности и технологических процессов предприятия различных отраслей потребляют электроэнергию и трубные энергоресурсы (отопление, горячее водоснабжение и т.д.). Затраты на приобретение энергоресурсов составляют значительную долю в себестоимости готовой продукции, что обуславливает актуальность энергосбережения. В свою очередь, энергосбережение невозможно без точного учета. Поэтому первым шагом для снижения затрат будет внедрение системы комплексного учета энергоресурсов.

Что такое комплексный учет энергоресурсов?

Комплексный учет энергоресурсов предусматривает построение единой автоматизированной системы, которая собирает показания со всех приборов первичного учета, которые измеряют потребление электроэнергии и других ресурсов. Информация с приборов учета поступает на устройство сбора данных и передается на сервер, где затем осуществляется их обработка. В результате предприятие получает развернутую картину потребления энергоресурсов и значительный объем аналитической информации, необходимой для оптимизации потребления.

Преимущества комплексного учета энергоресурсов

Внедрение системы комплексного учета энергоресурсов имеет целый ряд преимуществ перед использованием отдельных систем для каждого конкретного вида ресурсов. Прежде всего, это более экономичное решение за счет использования единой инфраструктуры сбора данных от приборов учета разных ресурсов.

Помимо этого, комплексная система дает следующие преимущества эксплуатационного характера:

  • Высокая информативность. Система комплексного учета энергоресурсов обеспечивает возможность получения данных о потреблении на любом из субъектов или структурных подразделений предприятия. Также обеспечивается возможность контроля показаний счетчиков энергоресурсов различного вида (электроэнергия, газ, отопление, вода и т.д.).
  • Актуальность. Комплексная система позволяет контролировать потребление энергоресурсов в режиме реального времени. Также обеспечивается накопление информации за прошлые периоды для последующего изучения и анализа.
  • Полная автоматизация процесса сбора информации, что имеет большое значение для предприятий со сложной структурой и большим количеством приборов учета потребления энергоресурсов.
  • Высокий уровень точности получаемой информации о потреблении.

Благодаря этим преимуществам комплексный учет энергоресурсов является более удобным в эксплуатации. Кроме того, система позволяет обеспечить по-настоящему эффективный контроль энергопотребления, что дает возможность выявлять проблемные места и изыскивать новые возможности для экономии ресурсов.

Реализованные проекты по комплексному учету энергоресурсов

  • Поквартирный учет потребляемых энергоресурсов: электроэнергии, горячей и холодной воды.
  • Расчет балансов потребления энергоресурсов.
  • Выписка счетов на оплату в автоматическом режиме.
  • Наше предложение

    Компания «ЭНЕРГОАУДИТКОНТРОЛЬ» предлагает услуги по разработке и внедрению эффективной автоматизированной системы комплексного учета энергоресурсов на вашем предприятии. Мы имеем большой опыт интеграции таких систем, начиная со стадии проектирования, заканчивая сдачей объекта и вводом системы в эксплуатацию. Для построения систем используются передовые разработки и лучшее оборудование. Это позволяет нам гарантировать максимальную эффективность систем учета при сравнительно небольших затратах на их внедрение.

    Кроме того, Наша компания выполнила разработку и получила свидетельство об утверждении типа средства измерений на Системы автоматизированные измерения и учета электроэнергии и энергоресурсов «ИЦ ЭАК» (АСКУЭР ИЦ ЭАК), регистрационный № 60241-15, срок действия до 27.03.2020 г.

    Это позволяет существенно снизить затраты времени и средств на создание легитимных систем коммерческого учета энергоресурсов для промышленных предприятий и ЖКХ.

    
Выбор редакции
1.1 Отчет о движении продуктов и тары на производстве Акт о реализации и отпуске изделий кухни составляется ежед­невно на основании...

, Эксперт Службы Правового консалтинга компании "Гарант" Любой владелец участка – и не важно, каким образом тот ему достался и какое...

Индивидуальные предприниматели вправе выбрать общую систему налогообложения. Как правило, ОСНО выбирается, когда ИП нужно работать с НДС...

Теория и практика бухгалтерского учета исходит из принципа соответствия. Его суть сводится к фразе: «доходы должны соответствовать тем...
Развитие национальной экономики не является равномерным. Оно подвержено макроэкономической нестабильности , которая зависит от...
Приветствую вас, дорогие друзья! У меня для вас прекрасная новость – собственному жилью быть ! Да-да, вы не ослышались. В нашей стране...
Современные представления об особенностях экономической мысли средневековья (феодального общества) так же, как и времен Древнего мира,...
Продажа товаров оформляется в программе документом Реализация товаров и услуг. Документ можно провести, только если есть определенное...
Теория бухгалтерского учета. Шпаргалки Ольшевская Наталья 24. Классификация хозяйственных средств организацииСостав хозяйственных...