Из сферы производства в сферу. Что это сфера производства, определение, классификация


но и всех дальнейших

наблюдённые частоты стабилизируются,

при

Какового практическое применение методов теории вероятностей?

Практическое применение методов теории вероятностей заключается в пересчёте вероятностей «сложных» событий через вероятности «простых событий».

Пример. Вероятность выпадения герба при однократном подбрасывании правильной монеты равна ½ (к этому числу стремится наблюдённая частота выпадения герба при большом количестве бросаний). Требуется найти вероятность того, что при трёх бросаниях правильной монеты выпадет 2 герба.

Ответ: на этот вопрос даёт формула Берулли:

0.375 (т.е такое событие бывает в 37,5 % случаев при 2 –ух бросаниях правильной монеты).

Характерной особенностью современной теории вероятностей является тот факт, что несмотря на свою практическую направленность, в ней используют новейшие разделы почти всех разделов математики.

Основные понятия: генеральная и выборочная совокупность.

Привем таблицу соотнесения основных понятий генеральной совокупности и выборки.

Генеральная совокупность Выборочная совокупность
Случайная величина (x, h, z) Признак (x, y, z)
Вероятность p, p ген Относительная частота p, p выб
Распределение вероятностей Частотное распределение
Параметр (характеристика вероятностного распределения) Статистика (функция от выборочных значений признаков), служит для оценки того или иного параметра генерального вероятностного распределения
Примеры параметров и отвечающих им статистик
Одномерные случайные величины (одномерные распределения)
Математическое ожидание (m, Мx) Среднее арифметическое (m, )
Мода (Мо) Мода (Мо)
Медиана (Ме) Медиана (Ме)
Среднее квадратическое отклонение (s)
Дисперсия (s 2 , Dx) Дисперсия (s 2 , Dx)
Двумерные случайные величины (двумерные распределения)
Коэффициент корреляции r(x, h) Коэффициент корреляции r (x, y)
Многомерные случайные величины (многомерные распределения)
Коэффициенты уравнения регрессии b 1 ,b 2 ,…,b n Коэффициенты уравнения регрессии b 1 , b 2 , … , b n

Дисперсионный анализ

План лекции.

1. Однофакторный дисперсионный анализ.

Вопросы лекции.

Коэффициент корреляции

Принимает значения в диапазоне от -1 до +1

Безразмерная величина

Показывает тесноту связи (связь как синхронность, согласованность ) между признаками

Коэффициент регрессии

Может принимать любые значения

Привязан к единицам измерения обоих признаков

Показывает структуру связи между признаками: характеризует связь как зависимость, влияние, устанавливает причинно-следственные связи.

Знак коэффициента говорит о направлении связи

Усложнение модели

Совокупное влияние всех независимых факторов на зависимую переменную не может быть представлено как простая сумма нескольких парных регрессий.

Это совокупное влияние находится более сложным методом - методом множественной регрессии.

Этапы проведения корреляционного и регрессионного анализа:

· Выявление наличия взаимосвязи между признаками;

· Определение формы связи;

· Определение силы, тесноты и направления связи.

Задачи,решаемые после прочтения данной лекции:

Можно выписывать уравнения прямой и обратной регрессий для данных величин. Строить соответствующие графики. Находить коэффициент корреляции рассматриваемых величин. По критерию Стьюдента проверять гипотезу о существенности корреляционной связи. Пользуемся командами: ЛИНЕЙН и Мастер диаграмм в Excel.

Литература.

1. Конспект лекций.

  1. Гмурман, В.Е. Теория вероятностей и математическая статистика. - М.: Высшая школа, 2003. - 479 с.

1.8. Основные понятия планирования эксперимента и некоторые рекомендации

План лекции.

1. Планирование эксперимента: основные этапы и принципы.

2. Понятие эксперимента, отклика, поверхности отклика, факторного пространства.

3. Определение цели планирования эксперимента.

4. Основные этапы планирования:

Вопросы лекции:

1. Основные понятия. Постановка задачи.

Планирование эксперимента – это оптимальное (наиболее эффективное) управление ходом эксперимента с целью получения максимально возможной информации на основании минимально допустимого количества данных. Под самим же экспериментом понимаем систему операций, действий или наблюдений, направленных на получение информации об объекте.

Теория планирования эксперимента предполагает наличие определенных знаний и условно можно выделить следующие этапы планирования:

1) сбор и первичная обработка статистических данных

2) определение точечных и интервальных оценок распределения

3)и последующая их обработка, что предполагает знание статистических методов измерений случайной величины, теории проверки статистических гипотез, методов планирования эксперимента, в частности, пассивного эксперимента, методов дисперсионного анализа, методов поиска экстремума функции отклика;

2) составление плана эксперимента, проведение самого эксперимента, проведение обработки результатов эксперимента, оценка точности эксперимента.

Итак, дадим понятие самого эксперимента.

Эксперимент. Эксперимент является основным и наиболее совершенным методом познания, который может быть активным или пассивным.

Активный – основной вид эксперимента, который проводится в контролируемых и управляемых условиях, имеющих следующие преимущества:

1) результаты наблюдений независимые нормально распределенные случайные величины;

2) дисперсии равны друг другу (вследствие того, что выборочные оценки являются однородными);

3) независимые переменные измеряются с малой погрешностью в сравнении с погрешностью значения y ;

4) активный эксперимент лучше организован: оптимальное использование факторного пространства позволяет при минимальных затратах получить максимум информации про изучаемые процессы или явления.

Пассивный эксперимент не зависит от экспериментатора, который в данном случае выступает сторонним наблюдателем.

При планировании эксперимента исследуемый объект представляется в виде «черного ящика», на который воздействуют управляемые и неуправляемые факторы:

тут - управляемые факторы; - неуправляемые факторы, - параметры оптимизации, которые могут охарактеризовать работу объекта.

Факторы. Каждый фактор может принимать определенное количество значений называемых уровнями факторов. Множество возможных уровней фактора называется областью определения фактора, которые могут быть непрерывными или дискретными, ограниченными и неограниченными. Факторы могут быть:

- совместимыми: предполагается допустимость любой комбинации факторов, которая не должна влиять на сохранение изучаемого процесса;

- независимыми: между факторами должна отсутствовать корреляционная связь, то есть имеется возможность изменять значение каждого из рассматриваемых в системе факторов независимо друг от друга. Нарушение хотя бы одно­го из этих требований приводит либо к невозможности применения планирования эксперимента, либо к весьма серьезным трудностям. Правильный выбор факторов позволяет четко задавать условия опыта.

Исследуемые параметры должны удовлетворять ряду требований:

- эффективность, способствующая скорейшему достижению цели;

- универсальность, характерная не только для исследуемого объекта;

- статистическая однородность, предполагающая соответствие с точностью до погрешности эксперимента определенному набору значений факторов определенного значения фактора ;

- количественное выражение одним числом;

- простота вычислений;

- существование при любом состоянии объекта.

Модель . Зависимость между выходным параметром (откликом) и входными параметрами (факторами) называется функцией откли­ка и имеет следующий вид:

(1)

Тут - отклик (результат эксперимента); - незави­симые переменные (факторы), которые можно варьировать при постановке экспериментов.

Отклик. Отклик – это результат опыта в соответствующих условиях, который также называют функцией цели, критерием эффективности, критерием оптимальности, параметром оптимизации и др.

В теории планирования эксперимента к параметру оптимизации предъявляются требования, выполнение которых необходимо для успешного решения задачи. Выбор параметра оптимизации должен базироваться на четко сформулированной задаче, на ясном понима­нии конечной цели исследования. Параметр оптими­зации должен быть эффективным в статистическом смысле, то есть определяться с достаточной точностью. При большой ошибке его определения необходимо увеличивать число параллельных опытов.

Желательно, чтобы параметров оптимизации было как можно меньше. Однако не следует добиваться уменьшения числа параметров оптимизации за счет полноты характеристики системы. Желатель­но также, чтобы система во всей полноте характеризовалась просты­ми параметрами оптимизации, имеющими ясный физический смысл. Естественно, что простой, с ясным физическим смыслом параметр оптимизации защищает экспериментатора от многих ошибок и избавляет его от многих трудностей, связанных с решением различных методических вопросов экспериментирования и технологиче­ской интерпретации полученных результатов.

Геометрический аналог параметра (функции отклика), соответствующий уравнению (1), называется поверхностью отклика, а пространство, в котором строят указанную поверхность,- факторным пространством. В простейшем случае, когда исследу­ется зависимость отклика от одного фактора, поверхность откли­ка представляет собой линию на плоскости, то есть в двухмерном пространстве. В общем случае, когда рассматриваются факто­ров, уравнение (1) описывает поверхность отклика в - мерном пространстве. Так, например, при двух факторах факторное пространство представляет собой факторную плоскость.

Целью планирования эксперимента является получение математической модели исследуемого объекта или процесса. При весьма ограниченных знаниях о механизме процесса аналитическое выражение функции отклика неизвестно, поэтому обычно используют полиномиальные математические модели (алгебраические полиномы) называемые уравнениями регрессии, общий вид которых:

(2)

где – выборочные коэффициенты регрессии, которые можно получить, пользуясь результатами эксперимента.

4. К основным этапам планирования эксперимента можно отнести:

1.Сбор, изучение, анализ всех данных об объекте.

2. Кодирование факторов.

3. Составление матрицы планирования эксперимента.

4. Проверка воспроизводимости опытов.

5. Расчет оценок коэффициентов регрессионного уравнения.

6. Проверка значимости коэффициентов регрессии.

7. Проверка адекватности полученной модели.

8. Переход к физическим переменным.

Литература

1. Конспект лекций.

4.1 Цепи Маркова. Случайные функции. Метод Монте - Карло. Имитационное моделирование. Сетевое планирование. Динамическое и целочисленное программирование

План лекции.

1. Методы Монте-Карло.

2. Метод статистических испытаний (методы Монте-Карло)

Вопросы лекции.

Что изучает теория вероятностей?

Теория вероятностей изучает так называемые случайные события и устанавливает закономерности в проявлении таких событий, можно сказать, что теория вероятностей является разделом математики, в котором изучаются математические модели случайных экспериментов, т.е. экспериментов, исходы которых нельзя определить однозначно условиями проведения опыта.

Для введения понятия случайного события необходимо рассмотреть некоторые примеры реальных экспериментов.

2. Дать понятие случайного эксперимента и привести примеры случайных экспериментов.

Приведем примеры случайных экспериментов:

1. Однократное подбрасывание монеты.

2.Однократное подбрасывание игральной кости.

3. Случайный выбор шара из урны.

4. Измерение времени безотказной работы электрической лампочки.

5. Измерение числа вызовов, поступающих на АТС за единицу времени.

Эксперимент является случайным, если нельзя предсказать исход не только первого опыта, но и всех дальнейших . Например, проводится некоторая химическая реакция, исход которой неизвестен. Если её один раз провести и получить определённый результат, то при дальнейшем проведении опыта в одних и тех же условиях случайность исчезает.

Примеров такого рода можно привести сколь угодно много. В чём же состоит общность опытов со случайными исходами? Оказывается, несмотря на то, что результата каждого из перечисленных выше экспериментов предсказать невозможно, на практике для них уже давно была замечена закономерность определённого вида, а именно: при проведении большого количества испытаний наблюдённые частоты появления каждого случайного события стабилизируются, т.е. всё меньше отличаются от некоторого числа, называемого вероятностью события.

Наблюдённой частотой события А () называется отношение числа появлений события А () к общему числу испытаний (N):

Такое свойство устойчивости частоты позволяет, не имея возможности предсказать исход отдельного опыта достаточно точно прогнозировать свойства явлений, связанных с рассматриваемым опытом. Поэтому методы теории вероятностей в современной жизни проникли во все сферы деятельности человека, причём не только в естественнонаучные, экономические, но и гуманитарные, такие, как история, лингвистика и т.д. На этом подходе основано статистическое определение вероятности .

при (наблюденная частота события стремится к его вероятности при росте количества опытов, то есть при n ).

Однако определение вероятности через частоту не является удовлетворительным для теории вероятностей как математической науки. Это связано с тем, что практически нельзя провести бесконечное число испытаний и наблюдённая частота меняется от опыта к опыту. Поэтому А.Н. Колмогоров предложил аксиоматическое определение вероятности, которое принято в настоящее время.

Что такое вероятность?

Столкнувшись с этим термином первый раз, я бы не понял, что это такое. Поэтому попытаюсь объяснить доступно.

Вероятность - это шанс того, что произойдет нужное нам событие.

Например, ты решил зайти к знакомому, помнишь подъезд и даже этаж на котором он живет. А вот номер и расположение квартиры забыл. И вот стоишь ты на лестничной клетке, а перед тобой двери на выбор.

Каков шанс (вероятность) того, что если ты позвонишь в первую дверь, тебе откроет твой друг? Всего квартиры, а друг живет только за одной из них. С равным шансом мы можем выбрать любую дверь.

Но каков этот шанс?

Дверей, нужная дверь. Вероятность угадать, позвонив в первую дверь: . То есть один раз из трех ты точно угадаешь.

Мы хотим узнать, позвонив раз, как часто мы будем угадывать дверь? Давай рассмотри все варианты:

  1. Ты позвонил в дверь
  2. Ты позвонил в дверь
  3. Ты позвонил в дверь

А теперь рассмотрим все варианты, где может находиться друг:

а. За 1ой дверью
б. За 2ой дверью
в. За 3ей дверью

Сопоставим все варианты в виде таблицы. Галочкой обозначены варианты, когда твой выбор совпадает с местоположением друга, крестиком - когда не совпадает.

Как видишь всего возможно вариантов местоположения друга и твоего выбора, в какую дверь звонить.

А благоприятных исходов всего . То есть раза из ты угадаешь, позвонив в дверь раз, т.е. .

Это и есть вероятность - отношение благоприятного исхода (когда твой выбор совпал с местоположение друга) к количеству возможных событий.

Определение - это и есть формула. Вероятность принято обозначать p, поэтому:

Такую формулу писать не очень удобно, поэтому примем за - количество благоприятных исходов, а за - общее количество исходов.

Вероятность можно записывать в процентах, для этого нужно умножить получившийся результат на:

Наверное, тебе бросилось в глаза слово «исходы». Поскольку математики называют различные действия (у нас такое действие - это звонок в дверь) экспериментами, то результатом таких экспериментов принято называть исход.

Ну а исходы бывают благоприятные и неблагоприятные.

Давай вернемся к нашему примеру. Допустим, мы позвонили в одну из дверей, но нам открыл незнакомый человек. Мы не угадали. Какова вероятность, что если позвоним в одну из оставшихся дверей, нам откроет наш друг?

Если ты подумал, что, то это ошибка. Давай разбираться.

У нас осталось две двери. Таким образом, у нас есть возможные шаги:

1) Позвонить в 1-ую дверь
2) Позвонить во 2-ую дверь

Друг, при всем этом, точно находится за одной из них (ведь за той, в которую мы звонили, его не оказалось):

а) Друг за 1-ой дверью
б) Друг за 2-ой дверью

Давай снова нарисуем таблицу:

Как видишь, всего есть варианта, из которых - благоприятны. То есть вероятность равна.

А почему не?

Рассмотренная нами ситуация - пример зависимых событий. Первое событие - это первый звонок в дверь, второе событие - это второй звонок в дверь.

А зависимыми они называются потому что влияют на следующие действия. Ведь если бы после первого звонка в дверь нам открыл друг, то какова была бы вероятность того, что он находится за одной из двух других? Правильно, .

Но если есть зависимые события, то должны быть и независимые ? Верно, бывают.

Хрестоматийный пример - бросание монетки.

  1. Бросаем монетку раз. Какова вероятность того, что выпадет, например, орел? Правильно - , ведь вариантов всего (либо орел, либо решка, пренебрежем вероятностью монетки встать на ребро), а устраивает нас только.
  2. Но выпала решка. Ладно, бросаем еще раз. Какова сейчас вероятность выпадения орла? Ничего не изменилось, все так же. Сколько вариантов? Два. А сколько нас устраивает? Один.

И пусть хоть тысячу раз подряд будет выпадать решка. Вероятность выпадения орла на раз будет все также. Вариантов всегда, а благоприятных - .

Отличить зависимые события от независимых легко:

  1. Если эксперимент проводится раз (раз бросают монетку, 1 раз звонят в дверь и т.д.), то события всегда независимые.
  2. Если эксперимент проводится несколько раз (монетку бросают раз, в дверь звонят несколько раз), то первое событие всегда независимое. А дальше, если количество благоприятных или количество всех исходов меняется, то события зависимые, а если нет - независимые.

Давай немного потренируемся определять вероятность.

Пример 1.

Монетку бросают два раза. Какова вероятность того, что два раза подряд выпадет орел?

Решение:

Рассмотрим все возможные варианты:

  1. Орел-орел
  2. Орел-решка
  3. Решка-орел
  4. Решка-решка

Как видишь, всего варианта. Из них нас устраивает только. То есть вероятность:

Если в условии просят просто найти вероятность, то ответ нужно давать в виде десятичной дроби. Если было бы указано, что ответ нужно дать в процентах, тогда мы умножили бы на.

Ответ:

Пример 2.

В коробке конфет все конфеты упакованы в одинаковую обертку. Однако из конфет - с орехами, с коньяком, с вишней, с карамелью и с нугой.

Какова вероятность, взяв одну конфету, достать конфету с орехами. Ответ дайте в процентах.

Решение:

Сколько всего возможных исходов? .

То есть, взяв одну конфету, она будет одной из, имеющихся в коробке.

А сколько благоприятных исходов?

Потому что в коробке только конфет с орехами.

Ответ:

Пример 3.

В коробке шаров. из них белые, - черные.

  1. Какова вероятность вытащить белый шар?
  2. Мы добавили в коробку еще черных шаров. Какова теперь вероятность вытащить белый шар?

Решение:

а) В коробке всего шаров. Из них белых.

Вероятность равна:

б) Теперь шаров в коробке стало. А белых осталось столько же - .

Ответ:

Полная вероятность

Вероятность всех возможных событий равна ().

Допустим, в ящике красных и зеленых шаров. Какова вероятность вытащить красный шар? Зеленый шар? Красный или зеленый шар?

Вероятность вытащить красный шар

Зеленый шар:

Красный или зеленый шар:

Как видишь, сумма всех возможных событий равна (). Понимание этого момента поможет тебе решить многие задачи.

Пример 4.

В ящике лежит фломастеров: зеленых, красных, синих, желтых, черный.

Какова вероятность вытащить НЕ красный фломастер?

Решение:

Давай посчитаем количество благоприятных исходов.

НЕ красный фломастер, это значит зеленый, синий, желтый или черный.

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Что такое независимые события ты уже знаешь.

А если нужно найти вероятность того, что два (или больше) независимых события произойдут подряд?

Допустим мы хотим знать, какова вероятность того, что бросая монетку раза, мы два раза увидим орла?

Мы уже считали - .

А если бросаем монетку раза? Какова вероятность увидеть орла раза подряд?

Всего возможных вариантов:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Не знаю как ты, но я раза ошибся, составляя этот список. Ух! А подходит нам только вариант (первый).

Для 5 бросков можешь составить список возможных исходов сам. Но математики не столь трудолюбивы, как ты.

Поэтому они сначала заметили, а потом доказали, что вероятность определенной последовательности независимых событий каждый раз уменьшается на вероятность одного события.

Другими словами,

Рассмотрим на примере все той же, злосчастной, монетки.

Вероятность выпадения орла в испытании? . Теперь мы бросаем монетку раз.

Какова вероятность выпадения раз подряд орла?

Это правило работает не только, если нас просят найти вероятность того, что произойдет одно и то же событие несколько раз подряд.

Если бы мы хотели найти последовательность РЕШКА-ОРЕЛ-РЕШКА, при бросках подряд, мы поступили бы также.

Вероятность выпадения решка - , орла - .

Вероятность выпадения последовательности РЕШКА-ОРЕЛ-РЕШКА-РЕШКА:

Можешь проверить сам, составив таблицу.

Правило сложения вероятностей несовместных событий.

Так стоп! Новое определение.

Давай разбираться. Возьмем нашу изношенную монетку и бросим её раза.
Возможные варианты:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Так вот несовместные события, это определенная, заданная последовательность событий. - это несовместные события.

Если мы хотим определить, какова вероятность двух (или больше) несовместных событий то мы складываем вероятности этих событий.

Нужно понять, что выпадение орла или решки - это два независимых события.

Если мы хотим определить, какова вероятность выпадения последовательности) (или любой другой), то мы пользуемся правилом умножения вероятностей.
Какова вероятность выпадения при первом броске орла, а при втором и третьем решки?

Но если мы хотим узнать, какова вероятность выпадения одной из нескольких последовательностей, например, когда орел выпадет ровно раз, т.е. варианты и, то мы должны сложить вероятности этих последовательностей.

Всего вариантов, нам подходит.

То же самое мы можем получить, сложив вероятности появления каждой последовательности:

Таким образом, мы складываем вероятности, когда хотим определить вероятность некоторых, несовместных, последовательностей событий.

Есть отличное правило, помогающее не запутаться, когда умножать, а когда складывать:

Возвратимся к примеру, когда мы подбросили монетку раза, и хотим узнать вероятность увидеть орла раз.
Что должно произойти?

Должны выпасть:
(орел И решка И решка) ИЛИ (решка И орел И решка) ИЛИ (решка И решка И орел).
Вот и получается:

Давай рассмотрим несколько примеров.

Пример 5.

В коробке лежит карандашей. красных, зеленых, оранжевых и желтых и черных. Какова вероятность вытащить красный или зеленый карандаши?

Решение:

Пример 6.

Игральную кость бросают дважды, какова вероятность того, что в сумме выпадет 8 очков?

Решение.

Как мы можем получить очков?

(и) или (и) или (и) или (и) или (и).

Вероятность выпадения одной (любой) грани - .

Считаем вероятность:

Тренировка.

Думаю, теперь тебе стало понятно, когда нужно как считать вероятности, когда их складывать, а когда умножать. Не так ли? Давай немного потренируемся.

Задачи:

Возьмем карточную колоду, в которой карты, из них пик, червей, 13 треф и 13 бубен. От до туза каждой масти.

  1. Какова вероятность вытащить трефы подряд (первую вытащенную карту мы кладем обратно в колоду и перемешиваем)?
  2. Какова вероятность вытащить черную карту (пики или трефы)?
  3. Какова вероятность вытащить картинку (вальта, даму, короля или туза)?
  4. Какова вероятность вытащить две картинки подряд (первую вытащенную карту мы убираем из колоды)?
  5. Какова вероятность, взяв две карты, собрать комбинацию - (валет, дама или король) и туз Последовательность, в которой будут вытащены карты, не имеет значения.

Ответы:

Если ты смог сам решить все задачи, то ты большой молодец! Теперь задачи на теорию вероятностей в ЕГЭ ты будешь щелкать как орешки!

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. СРЕДНИЙ УРОВЕНЬ

Рассмотрим пример. Допустим, мы бросаем игральную кость. Что это за кость такая, знаешь? Так называют кубик с цифрами на гранях. Сколько граней, столько и цифр: от до скольки? До.

Итак, мы бросаем кость и хотим, чтобы выпало или. И нам выпадает.

В теории вероятностей говорят, что произошло благоприятное событие (не путай с благополучным).

Если бы выпало, событие тоже было бы благоприятным. Итого может произойти всего два благоприятных события.

А сколько неблагоприятных? Раз всего возможных событий, значит, неблагоприятных из них события (это если выпадет или).

Определение:

Вероятностью называется отношение количества благоприятных событий к количеству всех возможных событий . То есть вероятность показывает, какая доля из всех возможных событий приходится на благоприятные.

Обозначают вероятность латинской буквой (видимо, от английского слова probability - вероятность).

Принято измерять вероятность в процентах (см. тему , ) . Для этого значение вероятности нужно умножать на. В примере с игральной костью вероятность.

А в процентах: .

Примеры (реши сам):

  1. С какой вероятностью при бросании монетки выпадет орел? А с какой вероятностью выпадет решка?
  2. С какой вероятностью при бросании игральной кости выпадет четное число? А с какой - нечетное?
  3. В ящике простых, синих и красных карандашей. Наугад тянем один карандаш. Какова вероятность вытащить простой?

Решения:

  1. Сколько всего вариантов? Орел и решка - всего два. А сколько из них благоприятных? Только один - орел. Значит, вероятность

    С решкой то же самое: .

  2. Всего вариантов: (сколько сторон у кубика, столько и различных вариантов). Благоприятных из них: (это все четные числа:).
    Вероятность. С нечетными, естественно, то же самое.
  3. Всего: . Благоприятных: . Вероятность: .

Полная вероятность

Все карандаши в ящике зеленые. Какова вероятность вытащить красный карандаш? Шансов нет: вероятность (ведь благоприятных событий -).

Такое событие называется невозможным .

А какова вероятность вытащить зеленый карандаш? Благоприятных событий ровно столько же, сколько событий всего (все события - благоприятные). Значит, вероятность равна или.

Такое событие называется достоверным .

Если в ящике зеленых и красных карандашей, какова вероятность вытащить зеленый или красный? Опять же. Заметим такую вещь: вероятность вытащить зеленый равна, а красный - .

В сумме эти вероятности равны ровно. То есть, сумма вероятностей всех возможных событий равна или.

Пример:

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность не вытащить зеленый?

Решение:

Помним, что все вероятности в сумме дают. А вероятность вытащить зеленый равна. Значит, вероятность не вытащить зеленый равна.

Запомни этот прием: вероятность того, что событие не произойдет равна минус вероятность того, что событие произойдет.

Независимые события и правило умножения

Ты кидаешь монетку раза, и хочешь, чтобы оба раза выпал орел. Какова вероятность этого?

Давай переберем все возможные варианты и определим, сколько их:

Орел-Орел, Решка-Орел, Орел-Решка, Решка-Решка. Какие еще?

Всего варианта. Из них нам подходит только один: Орел-Орел. Итого, вероятность равна.

Хорошо. А теперь кидаем монетку раза. Посчитай сам. Получилось? (ответ).

Ты мог заметить, что с добавлением каждого следующего броска вероятность уменьшается в раза. Общее правило называется правилом умножения :

Вероятности независимых событий переменожаются.

Что такое независимые события? Все логично: это те, которые не зависят друг от друга. Например, когда мы бросаем монетку несколько раз, каждый раз производится новый бросок, результат которого не зависит от всех предыдущих бросков. С таким же успехом мы можем бросать одновременно две разные монетки.

Еще примеры:

  1. Игральную кость бросают дважды. Какова вероятность, что оба раза выпадет?
  2. Монетку бросают раза. Какова вероятность, что в первый раз выпадет орел, а потом два раза решка?
  3. Игрок бросает две кости. Какова вероятность, что сумма чисел на них будет равна?

Ответы:

  1. События независимы, значит, работает правило умножения: .
  2. Вероятность орла равна. Вероятность решки - тоже. Перемножаем:
  3. 12 может получиться только, если выпадут две -ки: .

Несовместные события и правило сложения

Несовместными называются события, которые дополняют друг друга до полной вероятности. Из названия видно, что они не могут произойти одновременно. Например, если бросаем монетку, может выпасть либо орел, либо решка.

Пример.

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность вытащить зеленый или красный?

Решение .

Вероятность вытащить зеленый карандаш равна. Красный - .

Благоприятных событий всего: зеленых + красных. Значит, вероятность вытащить зеленый или красный равна.

Эту же вероятность можно представить в таком виде: .

Это и есть правило сложения: вероятности несовместных событий складываются.

Задачи смешанного типа

Пример.

Монетку бросают два раза. Какова вероятность того, что результат бросков будет разный?

Решение .

Имеется в виду, что если первым выпал орел, второй должна быть решка, и наоборот. Получается, что здесь две пары независимых событий, и эти пары друг с другом несовместны. Как бы не запутаться, где умножать, а где складывать.

Есть простое правило для таких ситуаций. Попробуй описать, что должно произойти, соединяя события союзами «И» или «ИЛИ». Например, в данном случае:

Должны выпасть (орел и решка) или (решка и орел).

Там где стоит союз «и», будет умножение, а там где «или» - сложение:

Попробуй сам:

  1. С какой вероятностью при двух бросаниях монетки оба раза выпадет одно и та же сторона?
  2. Игральную кость бросают дважды. Какова вероятность, что в сумме выпадет очков?

Решения:

Еще пример:

Бросаем монетку раза. Какова вероятность, что хотя-бы один раз выпадет орел?

Решение:

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. КОРОТКО О ГЛАВНОМ

Вероятность - это отношение количества благоприятных событий к количеству всех возможных событий.

Независимые события

Два события независимы если при наступлении одного вероятность наступления другого не изменяется.

Полная вероятность

Вероятность всех возможных событий равна ().

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Вероятность определенной последовательности независимых событий, равна произведению вероятностей каждого из событий

Несовместные события

Несовместными называются события, которые никак не могут произойти одновременно в результате эксперимента. Ряд несовместных событий образуют полную группу событий.

Вероятности несовместных событий складываются.

Описав что должно произойти, используя союзы «И» или «ИЛИ», вместо «И» ставим знак умножения, а вместо «ИЛИ» — сложения.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье - 299 руб.
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - 499 руб.

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Выбор редакции
1.1 Отчет о движении продуктов и тары на производстве Акт о реализации и отпуске изделий кухни составляется ежед­невно на основании...

, Эксперт Службы Правового консалтинга компании "Гарант" Любой владелец участка – и не важно, каким образом тот ему достался и какое...

Индивидуальные предприниматели вправе выбрать общую систему налогообложения. Как правило, ОСНО выбирается, когда ИП нужно работать с НДС...

Теория и практика бухгалтерского учета исходит из принципа соответствия. Его суть сводится к фразе: «доходы должны соответствовать тем...
Развитие национальной экономики не является равномерным. Оно подвержено макроэкономической нестабильности , которая зависит от...
Приветствую вас, дорогие друзья! У меня для вас прекрасная новость – собственному жилью быть ! Да-да, вы не ослышались. В нашей стране...
Современные представления об особенностях экономической мысли средневековья (феодального общества) так же, как и времен Древнего мира,...
Продажа товаров оформляется в программе документом Реализация товаров и услуг. Документ можно провести, только если есть определенное...
Теория бухгалтерского учета. Шпаргалки Ольшевская Наталья 24. Классификация хозяйственных средств организацииСостав хозяйственных...