Безналичные банковские расчёты. Виды безналичных расчётов


Экологическая безопасность

Предупр. и устранен. ЧС

3.

Полная безопасность –

Соотношение понятий: экологическая опасность и безопасность.

Экологическая безопасность – сост.защищенности жизнедеятельности, интересов личности, общества, гос-ва в процессе вз-я общества и природы от реальных или потенциальных угроз, созданных антропогенным или естественным воздействием на среду.

Принципы экологической безопасности:

Обязат-ть экол.проверки и экспертизы всех объектов хоз. и иной деят-ти.

Обязат-ть полной компенсации нанесен.вреда

Предупр. и устранен. ЧС

Обеспеч.свободн.доступа к полной и достоверной информации

Переориентир.системы воспит., обр-я, мирровозр.на цели экол.без-ти и развит.международ.безопасн.

Критерии экологической безопасности:

4. Для биосферы, и ее частей экосистем, регионов, ландшафтов, включая административные образования, основной критерий экологической безопасности уровень эколого-экономического и природно-производственного паритета , т.е.степень соответствия общей техногенной нагрузки на территорию ее экологической техноемкости – предельной выносливости по отношению к повреждающим техногенным воздействиям.



5. Для отдельных экологических систем главным критерием безопасности выступают целостность, сохранность их видового состава, биоразнообразия и структуры внутренних взаимосвязей.

6. Для индивидуумов критерием является сохранение здоровья и нормальной жизнедеятельности.

Полная безопасность – риск равен 0 (там, где вероятность опасного воздействия отсутствует, воздействие опасных природных явлений таково, что не вызывает нежелательных последствий, вероятность опасного воздействия велика, но отсутствует объект, на который оно воздействует).

Опасность – возможность наступления обстоятельств, при которых материя, поле, информация или их сочетание могут таким образом повлиять на сложную систему, что это приведет к ухудшению или невозможности ее функционирования и развития.

Мера экологической опасности - экологический риск. Рассматривается в 2 аспектах – вероятное нарушение природн.равновесия, вероятное агрессивное воздействие факторов ОС непосредств.на человека. Экологический риск – вероятность загрязнения ОС или перехода ее в неустойчивое состояние в результате текущей или рланируемой хоз.деят-ти, возможные потери контроля за происходящем экологическим событием.

Экологическое равновесие.

Экологическое равновесие в природе - от­носительная устойчивость видового состава живых орга­низмов, их численности, продуктивности, распределения в пространстве, а также сезонных изменений, круговорота веществ, и других биологических процессов в любых при­родных сообществах.

В основе экологического равновесия экосистем лежит постоянство биотического круговорота веществ, который в каждой конкретной экосистеме имеет свои особенности, сязанные с видовым составом и численностью организ­мов, их типом обмена веществ. Решающее значение при этом имеют соотношение автотрофов (продуцентов) и гетеротрофов (консументов, редуцентов), а также приспособ­ленность организмов друг к другу и к среде обитания. Совокупность этих факторов, сложившаяся в процессе эволюции, обеспечивает устойчивость экосистем, или их гомеостаз. За меру стабильности экосистем часто прини­мают их видовое разнообразие - чем оно выше, тем надежнее поддерживается экологическое равновесие.



При колебаниях условий среды, выходящих за преде­лы, обычные для данной экосистемы, возникают наруше­ния экологического равновесия , приводящие к снижению численности одних и резкому увеличению других видов. Плотность того или иного вида при неблагоприятных ус­ловиях снижается, но в оптимальных условиях возрастают плодовитость, скорость роста и развития, и плотность вида восстанавливается.

Часто под нарушением экологического равновесия по­нимают не только изменения различных биотических фак­торов, но и значительные колебания газового состава ат­мосферы, загрязнение вод, глобальное загрязнение окружающей среды, то есть все, что может изменить нор­мальную жизнь на данной территории живых организмов.

Актуальность сохранения экологического равновесия возросла в XX веке с появлением таких средств воздействия на экосистемы, которые могут привести к их необратимому нарушению.

Закон минимума (Ю. Либих)

Существование и успех любого организма или любой группы организмов зависит от комплекса определенных условий. Любое условие, приближающее к пределу толерантности или превышающее его, называется лимитирующим условием, или лимитирующим фактором. При стационарном состоянии лимитирующим будет то жизненно важное вещество, доступные количества которого наиболее близки к необходимому минимуму. Эта концепция известна ка "закон минимума" Либиха. Она менее применима к "переходным состояниям", когда количества, а следовательно, и эффект многих составляющих быстро изменяются.

Закон растущего плодородия

Агротехнические и другие прогрессивные приемы ведения сельского хозяйства ведут к увеличению урожайности (само плодородие как свойство почв не увеличивается).

Закон оптимальности

Никакая система не может сужаться и расширяться до бесконечности; размер любой системы должен соответствовать ее функциям.

ЭНЕРГОЭФФЕКТИВНОСТЬ

Понятия "энергосбережение" и "энергоэффективность" очень взаимосвязаны. Действительно, само по себе "энергосбережение" в дословном понимании этого слова не является самоцелью. Никто сейчас не ставит задачу сберечь энергию любой ценой, ведь можно было бы ее тогда совсем не тратить, а закрыть все, погасить свет и остановить всю технологию или снизить потребность в энергии до минимума. Это было бы равнозначно призыву к

рекращению развития человечества. А кроме того, если рассматривать энергию с философской точки зрения, то энергия - "...общая количественная мера движения и взаимодействия всех видов материи. Энергия не возникает из ничего и не исчезает, она может только переходить из одной формы в другую...". То есть, энергия подчиняется закону сохранения, а, следовательно, ее нельзя сберечь. Тем не менее, понятие "энергосбережение"широко используется в мировой практике – “Energy Saving”, “Energy Conservation” (англ.), “Energieeinsparen” (нем.), но в это понятие вкладывается более общий смысл. Например, снижение удельного расхода твердого топлива на единицу выработанного 1 кВт.ч в обобщенном виде приводит к “сохранению” топлива в недрах земли, которое будет израсходовано для этой же цели, но в более долгосрочной перспективе, тем самым

показывается сохранение этого энергоресурса на определенный период времени.

Показатель Энергоэффективности- абсолютная или удельная величина потребления или потери энергетических ресурсов для продукции любого назначения, установленная государственными стандартами.

60. Эквивалентность преобразования форм энергии. Наиболее распространенные способы преобразования энергии в электрическую форму: гидротурбина, тепловая электростанция на ископаемом топливе, атомная электростанция на ядерном топливе атомная, электростанция на реакторе-размножителе.

При расчете КПД преобразования энергии учитываются показатели эффективности основных процессов и установок преобразования энергии (справочная литература).

Рассмотрим наиболее распространенные тепловые электростанции на ископаемом топливе (ТЭС). Средняя эффективность ВС I) настоящий момент лишь ненамного превышает 30%. Это означает, что только 1/3 тепла, выделяемого в котлах, превращается в электричество, остальное количество энергии теряется в виде отбросного тепла.

Преобразование химической энергии в тепловую в мощных паровых котлах протекает с КПД 88% , в то время как КПД преобразования тепловой энергии в механическую в паровой турбине Вставляет примерно 42%, а КПД преобразования механической энергии в электрическую с помощью электрогенератора - 98%. таким образом, суммарный КПД превращения химической Персии в электрическую в этом цикле составит 36%, так как 88x0.42x0.98=0.362.

Энергосодержание топлива может быть измерено по количеству тепла, выделяемого при сгорании, однако два вида топлива с равной теплотой сгорания не могут быть превращены одно в другое без определенной потери энергии. Так, например, уголь и мазут, взятые в определенном количестве, могут обладать одина­ковой теплотой сгорания, и тем не менее они не будут эквивалентными, так как в процессе преобразования угля в синтетический мазут часть энергии теряется. Таким образом, арифметичекую эквивалентность энергии угля и мазута в данном случае не следует отождествлять с эквивалентностью преобразования угля в i патетический мазут. То же самое справедливо при рассмотрении любых форм энергии.

Пример 1.

Определим соотношение между энергией, высвобождаемой при сжигании 1 кг угля, и энергией, потребляемой электроламп! и мощностью 100 Вт.

Решение: 7232 ккал/кг

Теплота сгорания угля составляет 9,35 кВт*ч/кг. ?

1 кг х 9,35 кВт*ч/кг = 9,35 кВт*ч = 9350 Вт*ч - энергия, ко торая выделяется в результате сжигания 1 кг угля.

9350 Вт*ч / 100 Вт = 93,5 ч - время работы лампы.

Арифметическим эквивалентом сжигания 1 кг угля являет1 я энергия, потребляемая 100-ваттной лампой в течении 93,5 часов.

Пример 2.

1 ккал равна количеству энергии, необходимой для нагрева 1 воды на 1 °С. Определим арифметическую эквивалентность, т.е. ее отношение между работой, производимой двигателем мощность 100 л.с., и энергией нагретой воды массой 1 кг.

Решение:

За 1 час двигатель произведет работу, равную 100 л.с., которая эквивалентна:

(100 л.с.*ч) х (2,69 * 10 6 Дж/л.с.*ч) = 2,69 * 10 8 Дж

(2,69 * 10 8 Дж) / (4184 Дж/ккал) = 64197 ккал

Этого количества энергии достаточно для того, чтобы нагреть 64197 кг воды на 1 °С.

Энергосод-ие топлива м.б.измерено по количеству тепла выделяемого при сгорании. Однако 2 вида топлива с равной теплотой сгорания не м.б. превраш. из одно в др.без потери. Арифметически они не будут эквивалентны.

Наиболее распространенная форма преобр-я энергии в электрическую форму (ТЭС на ПР, гидротурбина, АЭС на ядерн. топливе. При расчете КПД преобр-е энергии учитывается показатели эффективности осн. проц. и установок, преобр энергии). Средняя эффективность в ТЭС на ископаем. топливе = 30%=1/3 тепла выделяемая в котлах превращается в электричество, остальное тепло – отбросное тепло. Преобразование хим энергии в тепл. В мощных паровых котлах протек. с КПД=88%, в то время как КПДпреобр.теплов. энергии в механическую в паровой турбине =42%, а КПД преобразования механическ. Энергии в электрическую с помощью электрогенгератора= 98%.Т.обр. суммарн. КПД превращения хим. энергии в механ. в полный цикле составляет 36%.

Цикл Карно.

Следствием 1 нач.термодинамики является низкая эффективность преобраз-ия энергии в другие формы.1-ое начало утверждает,что внутренняя энергия U системы является постоянной. Её изменения определяются разностью между количеством тепла ∆Q, сообщ. сист.,и раб.∆А, совершённой системой.∆U=∆Q-∆A.

2-ое начало утверждает, что невозможно создать машину-вечный двигатель. Единственным результатом которого было бы создание работы, эквивалентной количеству тепла, полученному от нагревателя.

Предельное соотношение для перехода теплоты в работу вытекает из анализа циклического процесса, совершаемого тепловой машиной Карно.

Здесь тепловая энергия, полученная от нагревателя и преобразованная в работу А и выходящее тепло Q1.Поскольку при техническом процессе двигатель должен вернуться в начальное состояние, след-но ∆U=0,Q2=Q1+A, след-но то тепло, которое выделяется при нагреве образуется суммой отходного тепла и работы. По 2-му началу термодин.∆U≠0, след-но часть энергии неизбежно отдаётся окруж-м телам или поступает в атмосферу.

Анализ циклического процесса машины Карно, находит предельное соотношение для перехода тепла в работу.

Предельное соотношение для перехода тепла в работу вытекает вытекает из анализа циклич. процесса совершаемого тепловой машиной Карно.

В этом процессе рабочее вещество претерпевает последующее 4-х стадийное изменение состояния тепла.

В идеале машина Карно: теплоперенос от источника к рабочему веществу, и от рабочего вещества к стоку теплоты также происходит квазеравновесия (t раб.вещества на неадиабатич.стадиях поддержив-ся близкой к t теплового резервуара).Траектория изменения сост. раб. вещ-ва в цикле имеет форму на плоскости S,T.

S-энтропия Дж∙Кˉ¹,

Т-термодин.t,К.

Ключевым моментом для замыкания траектории явл-ся остановка стадии нетермического сжатия. Необходимым условием производства работы тепловой машины А>0, явл-ся перенос горячей воды к холодному резервуару. Степень преобразования подведенного тепла в работу, характеризуется КПД (η т)

η т =А / Q2 = 1- (Т1/Т2)=Т2 - Т1/Т2

Любая машина, которая преобразует тепло в работу будет иметь иеньше КПД, чем машина Карно.Для повышения КПД тепловой машины Т, при которой она получает энергию, должна быть выше, а Т,при которой тепло отводится ниже.

Верхний предел в настоящее время определяется конструктивной прочностью материалов и составляет 600°,нижний предел – это t окруж воздуха,воды,грунта, куда отводится тепло машины, она не может б.ниже 10-20°. След-но КПД Карно η=0,67

В результате термодинамич. ограничения величины КПД, создается «тепловая ловушка»,кот, невозможно избежать при любой схеме преобразования тепловой энергии.

Тепловой баланс ТС.

Если объект обменивается с др. объект.энергиией только в форме тепла, то соотв-но тепловой баланс в общем виде м.б. выражен:

Qф +Qэ +Qв =Qф` +Qh`

Qф - физическое тепло, введенное в процесс с исходными веществами

Qэ- тепло экзотермич. реакций и физ-х превращений, выделяемое в процессе

Qв – тепло введенное извне в процесс, не приним. участие в химич. реакциях

Qф` - физ тепло, выделенное из процесса с продуктами реакции

Qh` - потери тепла в ОС.

Та часть баланса, которую нельзя или трудно вычислить определяют как неизвестное из уравнения энергетического баланса. В общем виде составление теплового баланса м. б. рассчит:

Qф – физ тепло введенное или выведенное

C – кол-во исходных в-в

m- средняя теплоемкость исх. в-в

t-температура исх.в-в

Тепло экзотермических реакций и физ. превращений исходных в-в из 1го агрегатного состояния в др.берется из эксперимент.данных или определяется путем термохимических расчетов.

Тепло,введенное в аппарат извне расчитывается по теплосодержанию газообразного, жидкого, твердого теплоносителей Qв = m c t

Потери обусловленные теплопроводимостью наружных стенок аппарата, излучением и конвекцией рассчитывают на основании законов теплоотдачи или берут на основе практических данных.

Методы расчета эксергии.

Каждый поток эксергии анализируемой системы изображается полосой, ширина которого прямопропорциональна величине эксергии.

В1956 г Грант ввел термин «эксергия», греч.- работа, сила; лат- внешний.1

Эксергия – мера потенциальных ресурсов любого в-ва и потоков в условиях данной ОС и характеризует их превратимость и след-но возможность использования. Речь идет об энергии, которая может работать в реальных условиях ОС. Все величины эксергии рассчитываются от уровня земной ОС, модель которой была разработана Шаргутом: «Каждый ПР (за искл. солн. энергии поступающем извне),эксергию которой нужно найти, находится внутри ОС и представляет ценность лишь в той степени, в какой он по химическому составу, температуре, давлению отличается от нее

Данная схема – идеализированная модель, нах-ся в состояния равновесия и в природе не сущ-ет. Но если все составные части сущ-но отличаются от нее по составу или др. параметрам (ПР) будут исключ. из расчетов, ее можно считать квазестационарной. Эта модель позволила рассчитать значение эксергии почти всех ПР.

Т.О. можно вычислить эксергию продуктов,получаемых из природного сырья, металлов, хим.соед-й, отдельных элементов.

Эта эксергия равна минимальной работе, которая должна быть затрачена на их извлечение из ПР.

Особенностью энергетического баланса и связ-х с ним превращений энергии в системе применяются диаграммы потоков эксергии. Эти диаграммы ввел Грассман, а потом они были усовершенствованы Шаргутом и Бером.

Характерной особенностью диаграмм явл-ся то, что на них видно, как поток эксергии в отличии от потока энергии сохр. постоянное значение и может уменьшаться или вообще исчезать в результате потерь.

Метод индексов опасности.

Исп-ся для оценки опас-ти, существующей на пром.предприятии, если треб-ся оценить риск интегрально, не вдаваясь в детали производ.проц-в. Осно.идея – оценить некоторым числовым значением (индексом) степень опасности системы – индекс Дау. При вычислении индекса Дау (ИД) отдельным технич.характеристикам ставят в соответ-вие определ.показ-ли, численно характеризующие потенц.опасность отдельных эл-тов ТС, затем показ-ли суммируют, не вдаваясь в особ-ти функцион-ния дан.системы. Индекс Дау формир-ся как произведение 2 интеграл.показ-лей – узлового показателя опасности F и материального ф-ра М (это колич.мера интенс-ти выделения энергии или матриалов из определ.химич.вещ-в, котрые могут находиться или находятся в составе выбранной ед-цы оборудования или части процесса), для определения сост-ся перечень потенц-но опасных химич.вещ-в и матриалов, используемых в системе. Каждому из таких вещ-в ставится в соотв-вие определ.число, характеризующее его опасность.

Шкала таких чисел для химич-ки опас.вещ-в разраб-ся специал.международными или национальными агентствами и приводится в норматив.док-тах. Общий матер.фактор системы опрдел-ся как сумма М всех потенц-но опас.вещ-в, используемых в рассматриваемом процессе с весами, соответствующими их колич-ву.

М = Σ Vi * Ni , где i – номер рассматриваемого опас.вещ-ва, Vi – относит.кол-во вещ-ва в системе (масса или объем), Ni – индекс опас-ти вещ-ва по специал.шкале. Обычно М находится в интервале от 1 до 40.

Узловой показатель F = f1*f2, где f1 – показатель общей опасности, f2 – показ-ль специфич.опасностей. f1 характеризует факторы процесса, способные увеличить объем убытков при наступлении неблагопр.ситуации. f2 характеризует факторы, которые непосредственно увеличивают вероят-ть наступления неблаг.событий.

Грубая качеств.оценка последствий какого-либо события, пожара или взрыва можно определить по шкале индекса Дау:

Основные показатели метода индекса Дау

MY = C* Y RY = CF* MY

Построение полей риска

Некоторые риски имеют территориальное распределение. Это относится, в частности, ко всем природным рискам. Существуют специальные карты, на которых нанесена вероятность возникновения землетрясений, наводнений, оползней и других стихийных бедствий в различных районах земного шара. Существуют такие карты и для территории Российской Федерации. Промышленные риски также могут быть распределены неоднородно по различным территориям. Причем, может быть районирована как вероятность возникновения различных аварий, так и возможный ущерб. Наиболее высокий риск имеют промышленно развитые регионы, в частности, Московская область или Урал, где очень высока концентрация предприятий нефгегазоперерабатывающей, химической промышленности и других опасных производств. Анализ развития неблагоприятной ситуации на предприятии включает в себя в качестве обязательного элемента определение степени воздействия разрушительных факторов на объекты, находящиеся на различном расстоянии от источника опасного воздействия. Эта процедура носит название построения полей (или зон) риска. Таким образом, поле риска - это область на карте или схеме территории, характеризуемая определенной степенью воздействия конкретного разрушительного фактора на объекты и соответственно определенной степенью ущерба от него.

Рисунок 3.5 - Поле потенциального риска

В целом процесс построения полей риска проходит ряд последовательных стадий. Вначале определяются источники опасных воздействий. Ими могут быть: промышленная установка, хранилище опасных веществ, трубопроводы под давлением, паровые котлы и т.д.

Далее разрабатывается физическая модель, в соответствии с которой происходит распространение разрушающего или опасного фактора. Затем вычисляются форма и размеры зон, в которых параметры опасных факторов - температура, плотность лучистой энергии, давление или концентрация - будут иметь значения в определенном диапазоне.

Каждому выделенному диапазону соответствует своя степень поражения. Рассчитанные зоны воздействия затем накладываются на карту местности, на которой отображены объекты относительно источника воздействия. Границы зон воздействия имеют вид замкнутых концентрических кривых, вложенных одна в другую. В центре кривых располагаются источники опасных воздействий. Знание параметров и времени воздействия внутри каждого из полей риска позволяет в дальнейшем с учетом характеристик объектов оценить «натуральный» ущерб от аварии в неденежных единицах: число пострадавших и погибших, степень поражения, площадь выгоревших участков, степень разрушения зданий и т.д.

Далее натуральный ущерб переводится в денежное выражение. Для зданий и сооружений- эта процедура не вызывает особых сложностей. Что же касается нанесения ущерба здоровью людей и окружающей среде, то его выражение в денежных единицах представляет из себя самостоятельную сложную задачу.

Понятие управления риском

Задачи управления:

Стратения управления риском:

· - снижение риска

Принципы управления

· -полнота оценки риска

· Соц-политические решения

· -правовые меры

· -административные

· -организационные

· -экономические

· -технические меры

Цикл управления риском:

Величина риска

72. Анализ экологического риска на территории республики Мордовия. Для Республики Мордовия характерны явления, связанные с экзогенными (оползни, эрозии, суффозия, карстообразование) и гидрометеорологическими (весенние паводки, сильный ветер, град, заморозки, сильный снег, сильная метель и др.) процессами.

Проведенная инвентаризация подверженности населенных пунктов воздействию геоэкологических процессов показа­ла, что они активно проявляются в 193 населенных пунктах, в том числе один процесс – в 20, два – в 100, три – в 64, четыре – в ­9. Восемь населенных пунктов (города) отнесены к объектам первой очереди строительства противооползневых сооружений. На семи объек­тах требуется проведение неотложных (аварийных) работ (города Са­ранск, Краснослободск, Темников, села Булгаково, Большая Елховка, Под­горное Канаково, участок магистрального газопровода Уренгой – Ужго­род).

Наиболее уязвимыми по отношению к природным чрезвычайным ситуациям, обусловленных гидрологическими процессами, являются населенные пункты, расположенные по берегам рек Мокша, Инсар, Алатырь, Сура. При прохождении весеннего половодья высокого уровня в бассейне Мокши могут быть затоплены 14 сельских населенных пунктов, 7 автодорог республиканского значения.

На территории республики имеются 8 радиационно опасных объектов, которые лицензируются на право эксплуатации радиационных источников (РИ) и обращения с радиоактивными веществами (РВ), работа которых контролируется органами Ростехнадзора: 1) ГУЗ «Республиканский онкологический диспансер», г. Саранск, IV категория радиационной опасности; 2) ОАО «Электровыпрямитель», г. Саранск, IV категория радиационной опасности; 3) Саранский филиал ФГУП ВНИИТФА, г. Саранск, IV категория радиационной опасности; 4) химико-радиометрическая лаборатория ГУ «Управление гражданской защиты Республики Мордовия», г. Саранск, IV категория радиационной опасности; 5) ФГУ «Мордовская республиканская станция защиты растений», г. Саранск, IV категория радиационной опасности; 6) ФГУП «Саранский объединенный авиаотряд», г. Саранск, IV категория радиационной опасности; 7) ОАО «Саранский завод "Резинотехника"», г. Саранск, IV категория радиационной опасности; 8) ФГУ «Мордовский центр стандартизации, метрологии и сертификации», г.Саранск, IV категория радиационной опасности.

Дозовая нагрузка на население от радиационно опасных объектов IV категории исключена, так как в случаях возникновения аварий радиационное воздействие от этих объектов ограничивается помещениями, где проводятся работы с РИ или РВ. Контроль обеспечения системы государственного учета и контроля радиоактивных веществ и радиоактивных отходов в Республике Мордовия возложен на отдел окружающей среды, обращения с отходами, обеспечения экологической безопасности и гидротехнических сооружений Министерства природных ресурсов Республики Мордовия. В 2007 г. радиационных инцидентов на радиационно опасных объектах не было.

На территории республики имеются 9 химически опасных объектов: ОАО «Биохимик», г. Саранск – 60 т соляной кислоты и 22 т аммиака; ЗАО «Мясоперерабатывающий комбинат "Саранский"», г. Саранск – 20 т аммиака; ОАО «Молочный комбинат "Саранский"», г. Саранск – 20 т аммиака; ООО «Мордовия-Холод», г. Саранск – 20 т аммиака; ОАО «СанИнБев», Саранский филиал – 5 т аммиака; ООО «Мясоперерабатывающий комплекс "Атяшевский", р. п. Атяшево Атяшевского муниципального района – 20 т аммиака; ЗАО МПК «Торбеевский», р. п. Торбеево Торбееевского муниципального района – 30 т аммиака; ГУП «Мясокомбинат "Оброченский"», с. Оброчное Ичалковского муниципального района – 15 т аммиака; ГП «Мясокомбинат "Первомайский"», с. Первомайское Ковылкинского муниципального района – 15 т аммиака. Общий запас веществ составляет 227 т. В 2007 г. аварий и происшествий на химически опасных объектах не было.

Вместе с тем на потенциально опасных объектах сохраняется высокий уровень техногенных опасностей из-за износа технологического оборудования (свыше 60 %). Недостаточно налажено обеспечение предприятий безопасным технологическим оборудованием, приборами контроля и защиты. Слабо решаются вопросы оснащения производств системами автоматического обнаружения веществ. Все это создает возможность возникновения промышленных аварий и чрезвычайных ситуаций.

Понятие управления риском

Управление риском – анализ самой рисковой ситуации, разработка и обоснование управленческого решения, как правило, в форме нормативного акта, направляемого на минимизацию риска, поиск путей сокращения риска.

Стратегия управления риском - аналитически обоснованная программа действий и мер по определению и ограничению риска.

Задачи управления:

· -определение вероятности частоты, степени опасности, воздействие источников на факторы риска

· -снижение уязвимости объектов или увеличение их устойчивости к упомянотому воздействию

Стратения управления риском:

· - снижение риска

· -снижение числа источников и факторов риска

· -снижение подверженности экспозиции объектов по воздействию источников и факторов риска

· -повышение защитных свойств и объектов указанного воздействия

Принципы управления

· -полнота оценки риска

· -реальность целей управления

· -комплекчный учет особенностей источников и факторов риска и взаимодействие специфики объектов

· -планирование исходя из необходимой достаточности и максимально возможного имеющихся сил для снижения или удаления риска

· -заблаговременность действий по снижению риска

· Соц-политические решения

· -правовые меры

· -административные

· -организационные

· -экономические

· -технические меры

Цикл управления риском:

Установление источников и факторов риска: 2 блока – оценка риска и мониторинг риска (оба блока включают программу по снижению риска)

1.Оценка риска (качественные показатели)

Вероятность опасного воздействия

Экспозиция воздействия на человека и о.с.

Величина риска

2.Анализ риска: - матем модели, анализ чувствительности, деревья принятых решений

3.Процедура определения риска: идентификация риска, оценка воздействия, оценка зависимости – доза-эффект, характер риска.

Экологическая безопасность: определение и критерии.

Экологическая безопасность – сост.защищенности жизнедеятельности, интересов личности, общества, гос-ва в процессе вз-я общества и природы от реальных или потенциальных угроз, созданных антропогенным или естественным воздействием на среду.

Принципы экологической безопасности:

Обязат-ть экол.проверки и экспертизы всех объектов хоз. и иной деят-ти.

Обязат-ть полной компенсации нанесен.вреда

Предупр. и устранен. ЧС

Обеспеч.свободн.доступа к полной и достоверной информации

Переориентир.системы воспит., обр-я, мирровозр.на цели экол.без-ти и развит.международ.безопасн.

Критерии экологической безопасности:

1. Для биосферы, и ее частей экосистем, регионов, ландшафтов, включая административные образования, основной критерий экологической безопасности уровень эколого-экономического и природно-производственного паритета , т.е.степень соответствия общей техногенной нагрузки на территорию ее экологической техноемкости – предельной выносливости по отношению к повреждающим техногенным воздействиям.

2. Для отдельных экологических систем главным критерием безопасности выступают целостность, сохранность их видового состава, биоразнообразия и структуры внутренних взаимосвязей.

3. Для индивидуумов критерием является сохранение здоровья и нормальной жизнедеятельности.

Полная безопасность – риск равен 0 (там, где вероятность опасного воздействия отсутствует, воздействие опасных природных явлений таково, что не вызывает нежелательных последствий, вероятность опасного воздействия велика, но отсутствует объект, на который оно воздействует).

Следует отметить, что понятие «природная среда» мало подх дит для условий, окружающих человека в городе. Выброс з грязняющих веществ в воздушный бассейн, высокое тепловыдел ние, изменение условий поглощения и отражения солнечной р~ диации, деградация (вплоть до полного разрушения) почв, обе нения флоры и фауны, высокая запыленность территории, за грязнение водоемов, водотоков и донных отложений, воздейств шумовых источников и электромагнитных излучений и другие фа


6.1.3. Интегральные показатели техногенных воздействий

В Российской Федерации на уровне нормативного документа существуют только несколько схем индикации состояния среды. Это прежде всего критерии устойчивого лесопользования и «Кри­терии оценки экологической обстановки территорий для выявле­ния зон чрезвычайной экологической ситуации и зон экологиче­ского бедствия».

В этом документе предусмотрен единый подход, позволяющий классифицировать обследуемые территории с их спецификой по степени экологического неблагополучия и определен порядок по­этапного проведения оценки экологического состояния террито­рии. Нормативный документ не предназначен для использования как региональная система индикаторов (РСИ), но подбор инди­каторов из имеющегося списка позволяет придать им юридиче­ский статус гораздо быстрее, чем для вновь разработанных пока­зателей.

Ниже дается аннотированный обзор данных нормативов и пе­речень выбранных для схемы региональных экологических инди­каторов (РЭИ). В соответствии с «Критериями...» экологическая обстановка классифицируется по возрастанию степени экологи­ческого неблагополучия в городах и на территориях следующим образом:

относительно удовлетворительная;

напряженная;

критическая;

кризисная (зона чрезвычайной экологической ситуации);

катастрофическая (зона экологического бедствия).

Экологическая оценка изменения среды обитания в городе ха­рактеризуется:

состоянием здоровья населения;

уровнем загрязнения атмосферного воздуха (химического, био­логического);

уровнем загрязнения питьевой воды и источников питьевого и рекреационного назначения (химического, биологического);

загрязнением почв селитебных территорий (химическое, био­логическое, радиоактивное);

системой обращения с отходами.

Экологическая оценка изменения природной среды террито­рии характеризуется:

уровнем загрязнения воздушной среды;

загрязнением водных объектов, истощением ресурсов вод, де­градацией водных экосистем;

степенью деградации почв;

уровнем угнетения растительности;

биоразнообразием животного мира.


Таблица 6

Пример оценки процесса эвтрофикации по индикаторам «воздействие-состояние-отклик»

Индикатор Показатель )
Индикаторы степени воздействия Объем сбросов биогенных веществ в сточных водах: всего; прямой сброс в водоемы; сброс на душу населения по прибрежным регионам; ) удельные нагрузки фосфорсодержащих удобрений на < 1 га сельхозугодий
Индикаторы состояния Средняя концентрация фосфора в уязвимых участках: 1 частота и характеристика развития синезеленых " водорослей; эвтрофикация рек, ранжированных по концентрации \ минерального фосфора: слабая (< 25мкг/л), средняя (25-50 мкг/л) и сильная (> 50 мкг/л) }
Индикаторы отклика Степень доочистки фосфора на коммунальных очистных \ сооружениях: ! сокращение прямых сбросов неочищенных сточных вод; \ доля населения прибрежных регионов, присоединенное к системам очистки сточных вод; < площади водоохранных зон с естественной/квазистацио \ нарной растительностью }

фикации отражают индикаторы состояния в уязвимых участк экосистем: мелководьях, зонах замедленного водообмена, коне ных водоемах стока.

Наконец, эффективность борьбы с эвтрофикацией характер зуют индикаторы отклика экосистем на защитные меры, котор! наглядно показывают, какие результаты достигнуты (табл. 6.2).

Для избежания конфликтных ситуаций и конфронтации нео ходимо отразить все отраслевые и государственные интересы водопользовании, установив лимиты забора воды; количес~~ воды, которое обязательно остается в живом стоке реки (и может быть изъято) во временном разрезе и по створам ре плату за воду как ресурс, создание необходимых условий образ вания стока на территории бассейна; плату за осуществление во доохранных мероприятий; систему сбора платы всех видов * штрафных санкций за загрязнение поверхностных вод; меропри; ятия по предотвращению ухудшения гидрологического состоя ния реки и водосбора; контроль объема и качества стока в погра ничных створах.


Показатель Зона экологического бедствия Зона чрезвычайной экологической ситуации Норма Время воздействия
Критические уровни для наземной растительности, м< >/м 3
S0 2 >0,2 0,1-0,2 < 0,02 Среднегодовое
N0 2 >0,3 0,2-0,3 < 0,03 Среднегодовое
HF >0,02 0,01-0,02 < 0,002 Долговременное
Озон > 1,5 1,0-1,5 < 0,15 Максимальная за 1 ч
> 0,6 0,4-0,6 < 0,06 Средняя за 3 ч
Критические нагрузки для лесных и водных экосистем, г/м 3 в год
Соединения серы >5,0 3,0-5,0 < 0,32 Северные и центральные районы
Соединения азота > 4,0 2,0-4,0 < 0,28 Тоже
Ионы водорода >300 200-300 < 20,0 »

Загрязнение воздушной среды. Основными показателями загря^ нения атмосферного воздуха, характеризующими воздействие природную среду (растительность, почвы, поверхностные и по* земные воды), являются критические нагрузки и критические уро^ ни загрязняющих веществ. Под ними понимают максимальные зн~; чения выпадений или соответственно концентраций в атмосфе; ном воздухе загрязняющих веществ, которые не приводят к вре; ным воздействиям на структуры и функции экосистемы в долг временном плане. Критические уровни, максимально допустимь дая серы и азота, опубликованы в 1995 г. для всех стран Европы ЕМЕП-сети (сети панъевропейской программы мониторинга окр> жающей среды) 150 х 150 км. В табл. 6.3 приведены критичесь значения диоксида серы, диоксида азота, фторида водорода озона, влияющих на наземную растительность, а также кр* ческие нагрузки по соединениям серы, азота и ионов водород влияющие на лесные и водные экосистемы для европейской ча; ти России.

Оценка качества атмосферного воздуха в нашей стране пров: дится по двум наиболее широко используемым критериям: индег су загрязнения атмосферы (ИЗА) и комплексному показателю за рязнения атмосферного воздуха (Р).

Индекс загрязнения атмосферы рассчитывается по пяти осно: ным загрязняющим веществам (сумма средних концентраций, но^ мированных на среднесуточные ПДК, с учетом класса опасности; Применяется пятибалльная шкала оценок: удовлетворительная а туация (ИЗА < 5), относительно напряженная (ИЗА от 6 до 15" существенно напряженная (ИЗА от 16 до 50), критическая (ИЗ* от 51 до 100), катастрофическая (ИЗА свыше 100).

Комплексный показатель Р рассчитывается по среднегодовь концентрациям для любого числа ингредиентов по аналогичны: принципам с применением коэффициента изоэффективност класса опасности веществ и с учетом эффекта частичной сумма ции их токсического действия. Его значения табулированы от д: пустимого уровня загрязнения до состояния экологического бел ствия.

Загрязнение водных объектов. В качестве основных показателе; оценки состояния поверхностных вод выбраны токсичные, пр? оритетные загрязняющие вещества, в том числе обладающие свой ствами накопления в органах и тканях гидробионтов. Критер* оценки степени химического загрязнения поверхностных вод пр стабильном сохранении химического загрязнения в течение тре лет приведены в табл. 6.4. Широко применяется ПХЗ-10 - форма лизованный суммарный показатель химического загрязнения во. Он рассчитывается как сумма значений концентраций, норми ванных на ПДК рыбохозяйственных водоемов, для 10 загрязня щих веществ с максимальным превышением ПДК.


Расчет ГТХЗ-10 производится по формуле

ПХЗ-10 = Q/ПДК, + С 2 /ПДК 2 + Сз/ПДКз + ...

где С/ - концентрации химических веществ в воде; ПДК, - пре­дельно допустимая концентрация для 10 веществ в рыбохозяйствен-ных водоемах.

Коэффициент донной аккумуляции (КДА) определяется по формуле

КДА=С Д. 0 /С В,

где Сд.о иС в - концентрации загрязняющих веществ соответствен­но в донных отложениях и в воде.

Коэффициент накопления в гидробионтах К н рассчитывается по формуле

К н = С г /С в,

где С г - концентрация загрязняющих веществ в гидробионтах.

Усредненные значения критической концентрации некоторых загрязняющих веществ, мг/л:

Медь................................................................ 0,001-0,003

Кадмий............................................................. 0,008-0,02

Цинк................................................................... 0,05-0,1

Хлорированные углеводороды:

ПХБ............................................................................ 0,005

Бенз(а)пирен............................................................. 0,0005

При оценке состояния водных экосистем достаточно надежны­ми показателями являются характеристики состояния и развития всех экологических групп водного сообщества. На практике оценка этих индикаторов представляет значительные сложности из-за на­рушения радов наблюдений и малого числа точек наблюдений. Основные показатели по фито- и зоопланктону, а также по зоо-бентосу, характеризующие степень деградации пресноводных эко­систем, представлены в табл. 6.5.

В системе Роскомгидромета для оценки состояния поверхност­ных водных объектов применяется индекс загрязнения воды (ИЗВ). С его помощью сравнивают водные объекты между собой, харак­теризуют изменения качества воды. Это сумма нормированных к ПДК значений концентрации шести главных поллютантов: в ка­честве обязательных - БПК5 и растворенный кислород, а также четыре ингредиента с максимальными значениями.

Оценка качества воды базируется на сравнении со шкалой из семи градаций: от «очень чистая» (ИЗВ < 0,3) до «чрезвычайно грязная» (ИЗВ > 10,0). Она дополняется санитарными показателя­ми (коли-индекс, патогенные микроорганизмы).


Таблица 6.4 Критерии оценки степени химического загрязнения поверхностных вод

Показатель Зона экологического Зона чрезвычайной Удовлетворительная
бедствия экологической ситуации ситуация
Г Основные показатели: ПДК и ПХЗ-10*
Химические вещества классов опасности:
1-ППДК > 10 5-10
III-IV ПДК > 100 50-100
I - II ПХЗ-10 >80 35-80
III -IV ПХЗ-10 >500
Дополнительные показатели
Запахи и привкусы, баллы >4 3-4
Нефть и нефтепродукты Пленка темной окрас- Яркие полосы или Отсутствуют
ки, занимающая 2 / 3 площади пятна тусклой окраски
рН 5,0-5,6 5,7-6,5 -
ХПК, мг 0 2 /л 20-30 10-20 -
Растворенный кислород, % насыщенности 10-20 20-50 -
Нитриты, ПДК > 10 >5 < 1
Нитраты, ПД >20 > 10 < 1
Соли аммония, ПДК > 10 >5 < 1
Фосфаты, ПДК >0,6 0,3-0,6 < 0,05
Минерализация в долях регионального уровня 3-5 2-3 Региональный уровень
КДА (коэффициент донной аккумуляции) > 10 4 1&-W
К н (коэффициент накопления в гидробионтах) > 10 5 _________ 10 4 -10 5 _________ 10________

* ПХЗ-10 - формализованный суммарный показатель химического загрязнения вод для 10 максимально превышающих ПДК


Зования. В оценке экологического состояния почв основными по­казателями степени экологического неблагополучия являются кри­терии физической деградации, химического и биологического заг­рязнения. Также в качестве критерия экологического состояния территории используют площадь выведенных из землепользова­ния угодий в результате деградации почв (эрозия, дефляция, вто­ричное засоление, заболачивание). За комплексный показатель заг­рязнения почвы принимают фитотоксичность - свойство загряз­ненной почвы подавлять прорастание семян, рост и развитие выс­ших растений (тестовый показатель).

Признаком биологической деградации почв является снижение жизнедеятельности почвенных микроорганизмов, о котором мож­но судить по уменьшению уровня активной микробной биомассы, а также по более распространенному, но менее точному показате­лю - дыханию почвы. Кратность превышения предельно допусти­мых норм загрязняющих веществ в почве оценивается по их под­вижным (растворимым) формам. Радиоактивное загрязнение оце­нивается по мощности экспозиционной дозы (мкР/ч) и степени радиоактивного заражения (Бк/м 2).

Для оценки химического загрязнения широко используется показатель суммарного загрязнения почв Z c . Градации значений этого показателя были табулированы для следующих восьми эле­ментов: Си, Zn, Pb, Cd, Ni, Fe, Co, Hg, а категории загрязне­ния, сопоставленные с показателями здоровья населения, были утверждены в 1989 г. Главным санитарным врачом СССР в каче­стве нормативного документа. С тех пор оценка загрязнения почв по значениям Z c выполняется неккорректно (для произвольного набора поллютантов).

Изменения геологической среды. Геодинамические показатели деформации геологической среды с экологическими последствия­ми могут быть представлены в форме интенсивности и масштаба проявления современного напряженно-деформированного состо­яния верхних частей литосферы. Эти показатели определяются параметрами критических скоростей деформации и масштабом ожидаемого сейсмического эффекта. В качестве предельного кри­тического уровня геодинамического воздействия объектов исполь­зуется величина деформации 0,00001 отн. ед., которая применя­ется при оценке аномальных техногенных деформаций. Предель­ный (критический) уровень деформации 0,00001 отн. ед. может быть достигнут в локальных зонах в течение 15 - 30 лет. Эти сроки соизмеримы с минимальными сроками эксплуатации особо ответ­ственных объектов и сооружений. Нарушение их функционирова­ния может привести к критическим экологическим последствиям. Уровень деформации 0,0001 отн. ед. приводит к таким нарушениям геологической среды, что районы с этими нарушениями можно отнести к зонам геологического бедствия.


Критерии оценки состояния пресноводных экосистем* v

* ГОСТ 17.1.3.07-82 «Охрана природы, гидросферы. Правила контроля ка~ ства воды водоемов и водотоков»; Руководство по методам биологического ан~ за поверхностных вод и донных отложений / Под ред. В. А. Абакумова. - Л.: Гид-метеоиздат, 1983.

Сокращение ресурсов поверхностных вод. В качестве основно показателя оценки степени истощения водных ресурсов прик норма безвозвратного изъятия поверхностного стока. Норма - предельно допустимый объем безвозвратного изъятия повер ностного стока, составляющий 10-20 % среднемноголетнего зн чения естественного стока.

Безвозвратное изъятие поверхностного стока включает безвоз ратное водопотребление в коммунальном хозяйстве, промышле ности, теплоэнергетике, сельхозводоснабжении, орошении и п мышленном рыбоводстве с учетом потерь на испарение, межб сейновой переброски стока рек и др. Оценка его объема провод ся для замыкающих створов рек.

Загрязнение подземных вод. Загрязнение подземных вод на уч стках зоны влияния хозяйственных объектов характеризуется ко центрацией загрязняющих веществ и площадью области загрязн ния. Оценивается содержание нитратов, фенолов, тяжелых ме лов, нефтепродуктов, хлорорганики, бенз(а)пирена.

Загрязнение и деградация почв. Выбор критериев экологическ оценки состояния почв определяется спецификой их местопол жения, генезисом, буферностью, а также разнообразием испо


Бищной растительности). Изменение проективного покрытия про­исходит в результате антропогенного воздействия на раститель­ность разных типов, главными из которых являются механичес­кое нарушение фитоценоза (выпас, рекреация и т.д.) и хими­ческое воздействие, приводящее к изменению жизненного со­стояния видовых популяций через изменение процессов метабо­лизма и водного баланса.

Уменьшение запаса древесины основных лесообразующих по­род свидетельствует о процессе деградации лесных экосистем в результате неудовлетворительной лесохозяйственной деятельно­сти.

Лесные пожары являются опасным фактором, приводящим к деградации значительных площадей лесных экосистем. Обширные гари, на которых лес не восстанавливается в течение, как мини­мум, 10 лет, являются признаком необратимых изменений в эко­системе.

Изменения качественных и количественных характеристик рас­тительного покрова могут быть объективно интерпретированы толь­ко в сравнении с естественным состоянием растительных сооб­ществ. При этом под фоновыми понимают относительно ненару­шенные участки, аналогичные по своим природно-ландшафтным характеристикам исследуемой территории.

Зооценозы. Критерии и индикаторы состояния животного мира рассматриваются на уровне зооценоза или популяций отдельных животных. При расчете изменений разнообразия как критерия оце­нок состояния зооценоза в целом необходимо учитывать, что дан­ный критерий связан с оценкой обилия, а численность многих животных подвержена циклическим изменениям.

За временной шаг для оценки принимают десятилетние перио­ды сравнения. Индикатором могут быть как массово гнездящиеся птицы, так и, напротив, относительно редкий вид, имеющий эко-топически узкий диапазон условий обитания (например, черный коршун).

При оценке изменения плотности популяции видов - индика­торов антропогенной нагрузки - необходимо учитывать их раз­личную реакцию на воздействие: популяции устойчивых видов будут увеличивать свою численность, а популяции видов, чувствитель­ных к антропогенной нагрузке, - уменьшать ее.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13

Экологические критерии рассматриваются как мера антропогенного воздействия на экосистемы и ландшафты, при которой их основные функционально-структурные характеристики (продуктивность, интенсивность биотического круговорота, видовое разнообразие, устойчивость и др.) не выходят за пределы естественных изменений. Выделяются две основные группы экологических показателей – покомпонентные и комплексные.

К первой группе относятся индикаторы состояния воздуха, вод, почв и биогеоценотического покрова в целом. Особое место в этом ряду занимают биоиндикаторы, по которым можно судить о состоя- нии окружающей среды. В качестве экологических показателей вы- ступают жизненность и продуктивность вида или сообщества, видовое разнообразие, присутствие или отсутствие характерных видов и др. По их колебанию можно с большой достоверностью установить изменения природных комплексов под влиянием естественных и антропогенных факторов.

Ко второй группе экологических критериев относятся суммарные (интегральные) показатели, характеризующие природные системы в целом. Они могут быть получены на основе интеграции покомпонентных нормативов или путем нахождения интегральных ин-дикаторов. Один из способов получения суммарного показателя (Хs)

представляет собой расчет по формуле: Xs= 11 n x ki iin,=∑

где n – число покомпонентных нормативов; xi

– норматив состояния

компонента (в относительных величинах); ki

– весовой коэффициент

норматива.

Поиск интегральных показателей состояния окружающей среды – сложная и еще не решенная задача. К их числу можно отнести:интенсивность биотического круговорота, определяемую как отношение массы ежегодной биологической продукции к общей массе; естественную способность к самоочищению, обусловленную скоростью биотического круговорота; энергетико-вещественный баланс природных систем и другие. Важным показателем состояния среды является здоровье населения: динамика младенческой смертности, врожденные аномалии развития новорожденных, заболеваемость детей и взрослых и др.

Экологические критерии (нормативы, показатели) рассматриваются как мера антропогенного воздействия на экосистемы и ландшафты, при которой их основные функционально-структурные характеристики (продуктивность, интенсивность биологического круговорота, видовое разнообразие, устойчивость и др.) не выходят за пределы естественных - изменений (Современные проблемы..., 1992). Они призваны определить область и границы допустимого состояния природных систем и дозволенного воздействия на них со стороны человека. По мнению Т. Г. Руновой (1986), экологические нормативы должны отражать различные антропогенные изменения в природной среде и природных комплексах как источнике генофонда, хранителя ее эволюции, разнообразия и устойчивости. Поэтому их разработка должна опираться на результаты изучения свойств природных систем, особенно их способности к саморегулированию и сохранению своей структуры.

Экологические показатели выражаются в единицах массы, объема, силы на единицу площади или объема в единицу времени, а также в относительных величинах. В таком виде они могут быть использованы для оценки состояния и антропогенного изменения как отдельных природных компонентов, так и комплексов в целом.

В связи с этим можно выделить две основные группы экологических показателей – покомпонентные и комплексные .

К первой группе относятся индикаторы состояния и изменения отдельных компонентов природы (воздуха, вод, почв, биоты), достаточно репрезентативно характеризующие состояние природной среды. Примерами таких показателей являются состав атмосферы (например, содержание кислорода), радиационный и тепловой балансы земной поверхности, уровень Мирового океана (ля биосферы в целом), колебание стока и концентрации растворенного кислорода в воде рек и озер, содержание гумуса в почве, лесистость территории и другие.

Особое место в этом ряду занимают биоиндикаторы – виды или сообщества живых организмов (чаше всего растений), по состоянию которых можно судить о состоянии природной среды. В качестве важнейших экологических показателей выступают продуктивность вида или сообщества, суммарная биомасса, видовое разнообразие и др. По их колебанию можно с большой достоверностью установить изменения природных комплексов под влиянием как естественных, так и антропогенных факторов.

Ко второй группе экологических критериев относятся суммарные (интегральные) показатели, характеризующие природные системы в целом.

Они могут быть получены на основе интеграции покомпонентных нормативов или путем нахождения общесистемных индикаторов. Один из способов получения суммарного показателя (х s) представляет собой расчет по формуле.

Где n - число покомпонентных нормативов; x i - норматив состояния компонента (в относительных величинах); k i - весовой коэффициент норматива.

Поиск общесистемных индикаторов состояния природной среды – сложная задача. Предложен ряд показателей, количественно характеризующих структуру и функционирование экосистем. Среди них можно выделить интенсивность биологического круговорота веществ (отношение массы ежегодной биологической продукции к общей биомассе), естественную способность к самоочищению (обусловлена особенностями взаимосвязи и скорости биологического круговорота), энергетико-вещественный баланс природных систем и др.

В условиях города показателем состояния среды может служить здоровье населения (изменение младенческой смертности, врожденные аномалии развития новорожденных, заболеваемость детей и взрослых и др.).

Понятие экологической безопасности включает в себя систему регулирования и управления, способной прогнозировать и ликвидировать развитие опасных, чрезвычайных ситуаций. Экологическая безопасность касается промышленности, сельского и коммунального хозяйства, сферы услуг, области международных отношений.

Уровни экологической безопасности

    Глобальный уровень позволяет прогнозировать биосферные процессы. Цель глобального контроля – сохранение естественного мирового воспроизводства, его восстановление в области биосферного взаимодействия живых организмов. Управление безопасностью, осуществляют межгосударственные организации (ООН, ЮНЕСКО, ЮНЕП и другие) посредством издания и внедрения нормативных документов, создания экологических программ мирового развития, интеграции межгосударственных усилий в предотвращении и ликвидации последствий мировых катастроф

    Замечание 1

    Международное сотрудничество позволило разрешить и ограничить такие проблемы как ядерные испытания, китобойный промысел и вылов редких пород рыбы, производство хладагентов. Создана Красная книга, изучаются неизведанные территории.

    Региональный уровень включает в себя географические и экономические зоны, территории государств. Контроль безопасности проводится посредством союза государств (СНГ, объединение государств Африки и др.). Система безопасности регионального уровня включает: экологически безопасные технологии и чистую экономику, стабилизацию темпов развития экономики.

    Локальный уровень объединяет города, районы и предприятия разных сфер деятельности и осуществляет контроль выбросов, сточных вод и прочих вредных для атмосферы веществ. Управление экологией возложено на администрацию, предприятия и организации по контролю за санитарным состоянием города, района.

Независимо от управления и контроля за экологической безопасностью, объектом такого воздействия является окружающая среда. Поэтому на каждом уровне проводится анализ экономики, ресурсов, мер и культуры решения данных вопросов.

Нормативные акты в сфере экологической безопасности РФ

  • Конституция;
  • Федеральные законы и указы Президента;
  • Постановления Конституционного Суда;
  • Постановления, распоряжения Правительства;
  • Законодательство субъектов и их нормативные акты;
  • Международные конвенции, соглашения, нормы, правила и договоры
  • Нормативные и инструктивно-методические акты специально уполномоченных государственных органов;
  • Уставы населенных пунктов

Критерии и методы безопасности

В качестве критериев экологической безопасности используются:

  • Предельно допустимые концентрации (ПДК);
  • Предельно допустимые выбросы (ПДВ);
  • Предельно допустимые сбросы (ПДС).

Для отдельных экологических систем основными критериями их безопасности являются целостность, сохранность и разнообразие видов, их взаимосвязей. Для отдельных индивидуумов, критерием безопасности так же считается сохранение здоровья и условий жизнедеятельности.

Методы обеспечения безопасности экологии:

  • Контрольные включают методы измерения (количественные – физические, химические и пр.) и биологические методы (качественные, теоретические);
  • Прогнозные – методы системного анализа и динамики, информационных технологий и др;
  • Смешанные состоят из совокупности методов различного типа (например, эколого-токсикологические);
  • Методы управления качеством биосферы.
Выбор редакции
1.1 Отчет о движении продуктов и тары на производстве Акт о реализации и отпуске изделий кухни составляется ежед­невно на основании...

, Эксперт Службы Правового консалтинга компании "Гарант" Любой владелец участка – и не важно, каким образом тот ему достался и какое...

Индивидуальные предприниматели вправе выбрать общую систему налогообложения. Как правило, ОСНО выбирается, когда ИП нужно работать с НДС...

Теория и практика бухгалтерского учета исходит из принципа соответствия. Его суть сводится к фразе: «доходы должны соответствовать тем...
Развитие национальной экономики не является равномерным. Оно подвержено макроэкономической нестабильности , которая зависит от...
Приветствую вас, дорогие друзья! У меня для вас прекрасная новость – собственному жилью быть ! Да-да, вы не ослышались. В нашей стране...
Современные представления об особенностях экономической мысли средневековья (феодального общества) так же, как и времен Древнего мира,...
Продажа товаров оформляется в программе документом Реализация товаров и услуг. Документ можно провести, только если есть определенное...
Теория бухгалтерского учета. Шпаргалки Ольшевская Наталья 24. Классификация хозяйственных средств организацииСостав хозяйственных...