Налоговые правоотношения понятие особенности виды состав. Понятие и элементы налоговых правоотношений


Диатомовые водоросли или диатомеи (лат. Bacillariophyta) -- группа хромистов, традиционно рассматриваемая в составе водорослей, отличающаяся наличием у клеток своеобразного «панциря», состоящего из кремнезёма. Всегда одноклеточны, но встречаются колониальные формы. Обычно планктонные или перифитонные организмы, морские и пресноводные.

Являясь основной составляющей морского планктона, диатомовые создают до четверти всего органического вещества планеты.

Особенности строения диатомовых водорослей

Диатомовые водоросли представлены одноклеточными и колониальными микроскопическими индивидами, имеющими исключительно коккоидный тип структуры тела. Жесткая оболочка диатомовых состоит из прозрачного, как правило, симметричного кремнеземного панциря. В отделе, по данным разных авторов, насчитывается 12-25 тыс. видов.

Структура панциря, его форма, соотношение осей и плоскостей симметрии лежат в основе систематики диатомовых водорослей. Панцирь состоит из аморфного кремнезема, напоминающего по составу опал (Si2*хH2O, плотность 2,07), с примесью металлов (алюминия, железа, магния) и органического компонента, возможно, белка. Толщина стенок панциря зависит от концентрации кремния в среде и изменяется в значительных пределах: у тонкостенных форм - от сотых долей микрометра, у толстостенных - 13 мкм. Панцирь состоит из двух частей - эпитеки и гипотеки. Большая часть - эпитека надвигается своими краями на гипотеку как крышка на коробку. Эпитека состоит из плоской или выпуклой створки - эпивалъвы и пояскового ободка - эпицингулюма. Гипотека имеет аналогичные части: створку - гиповальву и поясковый ободок -гипоцингулюм. Эпицингулюм и гипоцингулюм составляют вместе поясок панциря.

Форма панциря разнообразна: в виде шара, диска, цилиндра и т. п. Она определяется формой створок и их высотой. Благодаря симметричности строения панциря через него можно провести продольную, поперечную и центральную оси симметрии, длина которых соответственно определяет длину, ширину и высоту панциря, а также продольную, поперечную, створковую плоскости симметрии. Если через панцирь можно провести все три плоскости симметрии, то он полностью симметричный, две - бисимметричный, одну - моносимметричный. Встречаются асимметричные панцири, через которые нельзя провести ни одной плоскости симметрии .

Различают два основных типа створок: актиноморфные (круглые, треугольные, многоугольные), через которые можно провести три и более плоскостей симметрии и зигоморфные, продолговатые с бисимметричной (перистой) структурой, через которые можно провести не более двух плоскостей симметрии.

Наружный и внутренний рисунки панциря, наблюдаемые в световой и электронный микроскоп, называют структурой панциря. Она специфична для разных таксонов и образована различными структурными элементами, из которых всеобщими и наиболее важными являются перфорации - система отверстий различного строения расположенных на створках, через которую происходит связь протопласта с внешней средой.

Различают мелкие поры - ареолы и крупные удлиненные камеры, прикрытые перфорированной пленкой - альвеолы. В створках панциря могут быть одна-две слизевые поры, через которые выделяется слизь, служащая для прикрепления водорослей к субстрату и образования колоний. Утолщения, выступающие над наружной или внутренней поверхностью створки, называются ребрами, они обеспечивают прочность панциря. У многих диатомовых водорослей на внешней поверхности панциря образуются выступы, щетинки, шипы, шипики, которые увеличивают его поверхность и служат для соединения клеток в колонию.

На створках панциря подвижных диатомей имеется шов в виде пары сквозных щелей. Швы имеют различную длину, разнообразное строение и могут располагаться на обеих створках или на одной из них. На середине створки ветви шва соединяются в центральном узелке (внутреннее утолщение стенки створки). Швы обеспечивают сообщение протопласта с внешней средой и способность к движению. В филогенетическом отношении наличие шва - прогрессивный признак, характерный для эволюционно более молодых видов.

Диатомовые водоросли, имеющие шов, способны к активному движению по субстрату, иногда в толще воды. Относительно механизма движения выдвинут ряд гипотез. Предполагают, что движение обусловлено током цитоплазмы в щели (канале) шва, либо током воды в полости шва.

Основное условие существования диатомовых водорослей в толще воды - способность препятствовать погружению - парение. Это обеспечивается небольшим объемом протопласта и содержанием многочисленных капелек масла, наличием тонкого панциря, часто снабженного разнообразными выростами, щетинками, другими структурными элементами, увеличивающими поверхность. У некоторых крупных диатомей выявлена способность к активному удалению из клеточного сока ионов тяжелых металлов и уменьшению суммарной концентрации ионов всех компонентов в клеточном соке по сравнению с их концентрацией в морской воде.

Хлоропласты диатомовых водорослей.

У диатомовых хлоропласты разнообразной формы, обычно пристенные. У центрических диатомей они обычно многочисленные, мелкие, у пеннатных крупные, часто лопастные. Хлоропласты имеют типичное для охрофитов строение. Пиреноидов может быть несколько, они выступают за пределы хлоропласта и иногда пронизаны тилакоидами.

Окраска хлоропластов бурая, желтоватая или золотистая. Она обусловлена тем, что зелёные хлорофиллы маскируются добавочными каротиноидами (бурый пигмент диатомин; в, е -- каротины; ксантофиллы: фукоксантин, неофукоксантин, диадиноксантин, диатоксантин). У большинства диатомей содержатся две формы хлорофилла c: c1 и c2. У ряда форм хлорофилл c1 может замещаться хлорофиллом c3 (найден также у примнезиофитовых и пелагофициевых). У некоторых видов могут присутствовать все три формы хлорофилла c, в то время как у других форма только одна.

Другие структуры диатомовых водорослей.

Большая часть клетки диатомей приходится на вакуоль с клеточным соком, цитоплазма занимает постеночное положение. Кроме того, цитоплазма скапливается в центре клетки в виде цитоплазматического мостика, соединённого с периферическим слоем цитоплазмы. В мостике расположено ядро. В цитоплазме множество капель масла. В виде крупных капель с характерным голубым блеском в ней встречается волютин. Присутствует хризоламинарин.

Митохондрии у диатомей разнообразной формы (шаровидные, овальные, палочковидные, нитчатые). Аппарат Гольджи расположен рядом с ядром, он состоит из нескольких диктиосом (до 20), которые содержат от 4 до 12 цистерн.

Ядро крупное, содержит 1-8 ядрышек, которые исчезают во время митоза. Центриоли отсутствуют. Центром организации микротрубочек являются пластинки, расположенные на полюсах веретена. Микротрубочки веретена формируются вне ядра, затем проходят в ядро через разрушенные участки его оболочки; ядерная оболочка постепенно исчезает. Таким образом, у диатомей митоз открытый. На ранних этапах микротрубочки идут от полюса к полюсу. Кинетохоры хромосом, по-видимому, прикрепляются к полюсным микротрубочкам. В анафазе хромосомы двигаются к полюсам, в поздней анафазе веретено удлиняется.

Колониальные формы диатомовых водорослей.

У некоторых диатомей клетки после деления не расходятся, образуя колонии. Клетки в колониях не связаны между собой, плазмодесмы отсутствуют.

Колонии у диатомовых водорослей бывают различных размеров и формы, это зависит как от количества общей слизи, так и от способа соединения клеток друг с другом. Образуются колонии всегда из одной клетки в результате последовательных и многократных делений ее самой и всех остальных возникающих при этом клеток. Все клетки остаются самостоятельными, и распад колонии не приводит к их гибели. Соединяются клетки при помощи слизи, выростов, шипиков, щетинок, рогов и пр. Колониальные формы обитают как в планктоне, так и в бентосе на различных субстратах -- на растениях и животных, на каменистых, песчаных и илистых грунтах, на технических сооружениях и других предметах, введенных в воду человеком.

В слизистых колониях клетки целиком погружены в выделяемую ими самими слизь. Эти колонии часто представлены бесформенными комочками или пленками однородной слизи, в которой клетки расположены беспорядочно. Клетки здесь могут быть подвижными, под микроскопом это создает впечатление движения всей колонии. Есть также вполне оформленные слизистые колонии, имеющие вид простых ветвистых трубок или листовидных пластинок, которые обычно прикрепляются к субстрату, реже свободно плавают. Они могут достигать макроскопических размеров. Слизь подобного рода колоний дифференцирована на наружный плотный слой и внутренний слой жидкой консистенции, в котором живут и двигаются клетки.

Форма колоний, не имеющих общей слизи, зависит от способа соединения клеток и очертаний створок. Нитевидные колонии образуются в том случае, если смежные клетки цилиндрические, а створки их круглые, причем клетки соединены поверхностью створок, мелкими шипиками (род Melosira) или специальными трубковидными выростами (роды Detonula, Stephanodiscus, Cyclotella). В лентовидных колониях клетки уплощенные, со створками линейной формы; соединяются поверхностью створок посредством слизи или мелких шипиков, расположенных по краю створок (роды Fragilaria, Rhabdonema, Achnanthes, Cymatosira, Dimerogramma). Особенно интересны колонии бациллярии парадоксальной (Bacillaria paradoxa): благодаря скользящему движению отдельных клеток по продольной оси створки в обе стороны, ее колония меняет форму от широкой ленты до длинной ступенчатой нити. Если клетки клиновидные и имеют булавовидные створки, то колония приобретает вееровидную форму.

Особенно распространены цепочковидные колонии разнообразной формы. В такие колонии клетки объединяются при помощи слизистых подушечек или тяжей, коротких или длинных трубковидных выростов, рогов, щетинок и шипиков (табл. 10, 7; рис. 95, 2--7). Клетки, соединенные одним или несколькими довольно длинными слизистыми тяжами, образуют гибкие и непрочные цепочки (род Thalassiosira, некоторые виды Cyclotella). Прямые, часто очень длинные и прочные цепочки образуются путем соединения клеток посредством трубковидных выростов -- длинных (род Sceletonema) или коротких (роды Bacterosira, Lauderia), а также щетинок (род Chaetoceros), длинных шипов (род Stephanopyxis), мелких шипиков (Rhizosolenia fragilissima) или рогов (роды Hemiaulus, Biddulphia). В таких цепочках соседние клетки обычно расположены на некотором расстоянии друг от друга, что повышает плавучесть колонии. При свойственном пеннатным диатомеям соединении клеток в колонии попеременно разными углами прямоугольного панциря образуются зигзаговидные цепочки (роды Tabellaria, Grammatophora, Thalassionema, Diatoma и др., рис. 95, 8, 9), а если соединение происходит с помощью двух углов одного конца створки, то получается звездчатая колония (роды Asterionella, Thalassiothrix). Клетки в подобных колониях скрепляются слизью, выделяемой специальными слизевыми порами, расположенными на полюсах створки.

Прикрепленные формы часто образуют своеобразные пучковидные или кустиковидные колонии. При этом исходная клетка сначала прочно прикрепляется одним концом к субстрату при помощи слизи, которая выделяется слизевой порой на базальпом конце створки и образует слизистую подошву. В процессе последующих делений клеток общая слизистая подошва разрастается и разветвляется, благодаря чему возникает кустиковидная колония с клетками, сидящими на концах студенистых «веточек» (роды Licmophora, Rhoicosphenia, Gomphonema, Cymbella, Didymosphenia, табл. 10, 8). Если такого разрастания слизи не происходит, то клетки сидят пучками непосредственно на слизистой подошве (роды Synedra, Licmosphenia). Иногда эти колонии достигают макроскопических размеров.

Совершенно уникальна колония Coenobiodiscus muriformis, состоящая из одного слоя в 200--500 клеток, соединенных в поясковой зоне перегородками органической природы. Эти колонии воспроизводятся без прохождения одноклеточной стадии.

Жизненный цикл диатомовых водорослей.

Жизненный цикл включает совокупность всех этапов (фаз, стадий) развития индивидов, в результате прохождения которых из определенных особей или их зачатков возникают новые, сходные с ними особи и зачатки, дающие начало новому жизненному циклу. У одного и того же вида водорослей, имеющих половой процесс, в зависимости от времени года и внешних условий наблюдаются разные формы размножения (бесполое и половое), при этом происходит смена ядерных фаз (гаплоидной и диплоидной).

Цикл развития диатомовых водорослей проходит в диплоидной фазе с гаметической редукцией. Мейоз происходит при образовании гамет, остальные клетки всегда диплоидные.

Вегетативное деление. Основной способ размножения диатомовых водорослей - вегетативное деление клетки надвое. Деление обычно происходит ночью и на рассвете и осуществляется по-разному у разных видов, а также у одних и тех же видов в зависимости от условий среды. Наиболее интенсивного развития диатомовые водоросли достигают весной и осенью.

Перед делением в протопласте скапливаются капли масла, он увеличивается в размерах, раздвигает эпитеку и гипотеку так, что они соприкасаются лишь краями поясковых ободков. У многих видов митозу предшествует деление хлоропласта.

Многократные вегетативные деления приводят к постепенному уменьшению размеров клеток, получающих гипотеку материнской клетки. У некоторых видов они уменьшаются в 3 раз по сравнению с первоначальными.

Образование ауксоспор. Восстановление первоначальных размеров клеток происходит во время прорастания покоящихся спор, покоящихся клеток и в результате полового процесса,сопровождающегося образованием ауксоспор. Считается, что до начала спорообразования клетки проходят внутреннюю перестройку, направленную на ликвидацию отклонений в метаболизме, вызванных нарушением соотношения объемов ядра и цитоплазмы в результате митотических делений. При этом происходит дифференциация клеток по их роли в репродуктивном процессе, так как не все клетки, достигшие определенного размера, переходят к спорообразованию.

У центрических диатомей попарное сближение клеток отсутствует, и ауксоспора образуется из одной клетки, в которой сначала происходит деление материнского диплоидного ядра на четыре гаплоидных, два из них затем редуцируются, а два сливаются в одно диплоидное ядро и образуется ауксоспора.

Все диатомовые водоросли - диплоидные организмы, а гаплоидная фаза у них бывает только перед слиянием ядер в ауксоспоре. После оплодотворения образуетсязигота, которая без стадии покоя начинает расти, увеличивается в размерах и превращается в ауксоспору («растущую спору»). При созревании ауксоспора превращается в инициальную клетку, значительно превосходящую по размерам исходную материнскую и иногда отличную от нее по форме. По положению относительно материнской клетки и связи с ней различают свободные, боковые, конечные, интеркалярные и полуинтеркалярные ауксоспоры. Диатомовые водоросли - единственная группа растительных организмов, в жизненном цикле которых есть стадия ауксоспорообразования.

Половой процесс. У диатомовых выявлено несколько типов полового процесса.

При изогамном половом процессе в двух материнских клетках образуется по две неподвижные гаметы, которые копулируют (сливаются) попарно (виды родов Amphora Ehr., Epithemia Breb., Rhopalodia O. Mull., Surirella Turp.).

Анизогамный (гетерогамный) половой процесс протекает двояко. В первом случае в ходе последовательных мейотического и митотического делений в каждой материнской клетке образуется по одной подвижной и одной неподвижной гамете. Подвижные гаметы передвигаются к неподвижным и сливаются с ними. Этот тип характерен дл большинства представителей семейства Naviculaceae и некоторых видов рода Nitzschia. Во втором случае в одной клетке обе гаметы неподвижные, в другой - обе подвижные, переходящие в клетку с неподвижными гаметами. Такой тип анизогамии характерен для Nfvicula halophila (Grun.) Cl. и Synedra ulna (Nitzsch.) Ehr.

При оогамном половом процессе женская репродуктивная клетка (оогоний) производит одну яйцеклетку (виды рода Stephanopyxis Thr., Melosira varians Ag.) или две (Biddulphia mobiliensis Bail.), а мужская репродуктивная клетка (сперматогоний) образует два (Melosira varians Ag.) или четыре (Biddulphia rhombus, Cyclotella sp.) сперматозоида, оплодотворяющих яйцеклетку. У центрических диатомей, в отличие от других водорослей, сначала образуется большое число мелких сперматогониев, а мейоз происходит в самый последний момент, непосредственно перед обособлением гамет. Обычно же при гаметической или спорической редукции у других водорослей сначала совершается мейоз, затем при митотических делениях увеличивается число ядер и лишь после этого формируется большое число гамет или гаплоидных зооспор.

Автогамия - особый тип полового процесса, распространенный у части диатомовых. Заключается он в том, что ядро клетки предварительно делится с мейозом на 4 ядра, два из них разрушаются, и оставшиеся два ядра сливаются, образуя вновь диплоидное ядро. Автогамия не сопровождается увеличение числа особей, а лишь их омоложением.

Клетки, связанные с половым процессом, имеют некоторые структурные отличия от обычных клеток. Так, в сперматозоидах Lithodesmium undulatum Ehr. отсутствуют диктиосомы, а хлоропласты более мелкие и упрощенные; в аксонеме жгутиков сперматозоидов Lithodesmium undulatum Ehr. и Pleurosira laevis (Ehr.) Compere нет двух внутренних микротрубочек, жгутики покрыты мастигонемами - волосками диаметром 11 нм.

Микроспоры и покоящиеся споры. У многих морских планктонных диатомей в клетках возникают микроспоры - мелкие тельца, образующиеся в количестве от 8 до 16 и более, у некоторых видов их бывает и более 100. Наблюдались микроспоры со жгутиками и без жгутиков, с хлоропластами и бесцветные. Образование микроспор особенно характерно для видов рода хетоцерос (Chaetoceros), у которых наблюдалось и их прорастание.

При неблагоприятных условиях диатомовые водоросли переходят в состояние покоя. В ходе образования покоящихся клеток протопласт передвигается к одному из концов клетки и, вследствие потери клеточного сока, сильно сжимается. Жизнедеятельность этих клеток возобновляется при наступлении благоприятных условий. Некоторые пресноводные планктонные озерные виды в зимний период погружаются на дно водоемов, где пребывают в состоянии покоя и пониженной жизнедеятельности до начала вегетационного периода.

У большинства диатомей образованию покоящихся спор предшествует деление вегетативной клетки на две, каждая из которых в дальнейшем становится материнской клеткой споры. Протопласт материнской клетки сжимается, округляется, на поверхности его возникает первичная створка споры, затем вторичная, которая выдвигается своими краями в края первичной. Содержимое споры гомогенно. Структура створок споры постоянна для каждого вида и отличается от структуры вегетативной клетки. Это один из наиболее важных видовых признаков. Как правило, материнская клетка производит одну экзогенную, полуэндогенную или эндогенную спору (у Rhizosolenia setigera Braight. - две). Зрелая экзогенная спора находится вне материнской клетки; одна створка зрелой полуэндогенной покоящейся споры включена в материнскую клетку, другая остается свободной; зрелая эндогенная покоящаяся спора находится внутри материнской клетки. Спора прорастает в вегетативную клетку, размер которой значительно превышает размер самой споры.

Покоящиеся споры обычно образуют многие морские неритовые диатомеи, а также некоторые пресноводные виды. У представителей многих родов они возникают периодически как обычное явление в жизненном цикле.

Движение диатомовых водорослей.

Большинство диатомовых водорослей передвигается по субстрату, хотя некоторые движутся и в толще воды. Подвижные диатомей, как правило, снабжены швом, причем чем сложнее устройство шва, тем совершеннее их движение. Но все же механизм движения до настоящего времени окончательно не объяснен.

Существует мнение, что клетки диатомовых водорослей скользят по субстрату благодаря плазматическому потоку в щелевидном шве панциря. Однако движение наблюдалось и у видов, имеющих очень короткий шов на конце створок без центрального узелка, а также в тех случаях, когда клетки были обращены к субстрату поясковой стороной или не соприкасались с опорой, как, например, при вращательном движении.

Одна из причин, вызывающих движение диатомей,-- фототаксис. Некоторые виды обладают положительным фототаксисом, другие -- отрицательным. Бентосные диатомей, обитающие на дне, при сильном освещении погружаются в иловую пленку, а при благоприятном для них освещении перемещаются на ее поверхность. Некоторые из них по-разному реагируют на различные цвета спектра. Так, например, Navicula radiosa относится положительно к красным лучам спектра и отрицательно к голубым. Кроме того, на движение диатомовых водорослей отрицательно действуют различные вещества, способные растворять слизь.

Экология диатомовых водорослей.

Диатомеи широко распространены во всевозможных биотопах. Они живут в океанах, морях, солоноватых и различных пресных водоёмах: стоячих (озёрах, прудах, болотах и т.д.) и текучих (реках, ручьях, оросительных каналах и др.). Они распространены в почве, их выделяют из образцов воздуха, они образуют богатые сообщества во льдах Арктики и Антарктики. Такое широкое распространение диатомовых обусловлено их пластичностью по отношению к различным экологическим факторам и в то же время существованием видов, узко приспособленных к экстремальным значениям этих факторов.

Диатомовые в водных экосистемах доминируют над другими микроскопическими водорослями круглый год. Они обильны как в планктоне, так и в перифитоне и бентосе. В планктоне морей и океанов преобладают центрические диатомеи, хотя к ним примешиваются и некоторые пеннатные. В планктоне пресных водоёмов, наоборот, преобладают пеннатные. Бентосные ценозы также отличаются большим разнообразием и количеством диатомовых, которые обычно обитают на глубине не более 50 м. Жизнь бентосных диатомей обязательно связана с субстратом: они ползают по субстрату или прикрепляются к нему с помощью слизистых ножек, трубок, подушечек.

Наиболее богаты по качественному и количественному составу диатомей ценозы обрастаний. Диатомеи занимают господствующее положение среди обрастаний высших растений и макроскопических водорослей в пресных водоёмах и морях. Обрастанию могут подвергаться многие животные (такие водоросли называются эпизоонтами) от ракообразных до китов. Среди диатомей встречаются и эндобионты, которые обитают в других организмах, например в бурых водорослях, фораминиферах.

Видовой состав диатомей в водоёмах определяется комплексом абиотических факторов, из которых большое значение в первую очередь имеет солёность воды. Не менее важным фактором для развития диатомей являются температура, степень освещённости и качество света. Диатомовые вегетируют в диапазоне 0-70°С, но в состоянии покоя способны переносить как более низкие, так и более высокие температуры.

Диатомовые - фоторофные организмы, но среди них встречаются миксотрофы, симбиотрофы, а также бесцветные гетеротрофные формы.

Геном диатомовых водорослей.

Диатомовые водоросли появились сравнительно недавно по геологическим масштабам времени, однако успели стать одной из важнейших групп фотосинтезирующих организмов на планете. Анализ генома диатомеи Phaeodactylum показал, что удивительный эволюционный успех диатомей во многом объясняется их способностью заимствовать полезные гены у бактерий.

Большая международная группа ученых сообщила в последнем номере журнала Nature о прочтении генома диатомовой водоросли Phaeodactylum tricornutum. Это уже второй вид диатомовых водорослей, геном которого удалось прочесть (первым в 2004 году был опубликован геном диатомеи Thalassiosira). Диатомеи подразделяются на центрических и пеннатных (см. рисунки), причемThalassiosira относится к первой группе, а Phaeodactylum -- ко второй.

Интерес исследователей к диатомеям далеко не случаен: по примерным оценкам, на долю этих одноклеточных водорослей приходится около 20% всей первичной продукции биосферы. Диатомеи практически вездесущи: их можно встретить не только во всех морях и пресных водоемах, но и в таких экстремальных местообитаниях, как высокогорные пустыни и антарктические льды.

Диатомеи -- группа сравнительно молодая. Древнейшие находки ископаемых центрических диатомей известны из отложений юрского периода (около 180 млн лет назад). Пеннатные диатомеи вдвое моложе: они известны лишь начиная с позднего мела (90 млн лет назад); при этом они гораздо разнообразнее и многочисленнее своих центрических предков.

Имея в своем распоряжении два полных генома диатомей, ученые смогли сделать ряд важных выводов об эволюции группы.

Один из основных выводов состоит в том, что эволюция диатомей происходила на удивление быстро. Лишь для 57 % генов пеннатной диатомеи нашлись гомологи (близкородственные гены) в геноме центрической диатомеи. Аминокислотные последовательности белков у двух диатомей совпадают только на 54,9 %. Для сравнения, белки человека и рыбы фугу имеют 61,4 % одинаковых аминокислот, человека и асцидии -- 52,6 %. Таким образом, по строению белков две диатомеи сильнее отличаются друг от друга, чем человек от рыбы, но меньше, чем человек от низших хордовых, представителем которых является асцидия. Между тем эволюционные линии млекопитающих и лучепёрых рыб разошлись, по имеющимся оценкам, около 450 млн лет назад, то есть за много сотен миллионов лет до появления диатомей. Это значит, что темпы молекулярной эволюции у диатомей были в несколько раз выше, чем у позвоночных.

Дупликации (удвоения) больших фрагментов генома не играли в эволюции диатомей такой важной роли, как у позвоночных. Особенностью эволюции центрических диатомей было приобретение (по-видимому, сравнительно недавнее) большого количества новых интронов -- некодирующих вставок в генах. У пеннатных диатомей массового распространения интронов не было, зато в их геномах бурно размножились мобильные генетические элементы -- ретротранспозоны (см. таблицу). Проанализировав дополнительные данные по другим видам пеннатных диатомей, авторы пришли к выводу, что активность ретротранспозонов была важным фактором, способствовавшим росту видового разнообразия этой группы. Перепрыгивая с место на место внутри генома, ретротранспозоны могут влиять на активность соседних генов и способствовать росту генетической изменчивости.

Диатомеи вместе с бурыми и золотистыми водорослями и некоторыми другими эукариотами входят в состав группы Heteroconta. Считается, что гетероконты появились около 1 млрд лет назад в результате симбиоза гетеротрофного (нефотосинтезирующего) одноклеточного организма с одноклеточной же красной водорослью. У красных водорослей, как и у зеленых растений, хлоропласты (органеллы, служащие для фотосинтеза) являются первичными, то есть происходят напрямую от симбиотических цианобактерий. Первичные хлоропласты всегда окружены двумя мембранами. Предки гетероконт проглотили одноклеточную красную водоросль и превратили ее в фотосинтезирующего симбионта. Впоследствии от клетки красной водоросли почти ничего не осталось, кроме внешней оболочки и хлоропласта. Гены симбиотической красной водоросли были отчасти утрачены, отчасти -- перешли в геном хозяина. Поэтому хлоропласты гетероконт называют «вторичными», и они окружены не двумя, а четырьмя мембранами (из них две внутренние -- это оболочка первичного хлоропласта, третья изнутри -- бывшая оболочка клетки красной водоросли, а четвертая, внешняя -- это оболочка пузырька-вакуоли, в которую была заключена проглоченная красная водоросль).

Авторы проверили эту теорию, предприняв целенаправленный поиск в геномах диатомей генов, похожих на гены красных водорослей. Поиск увенчался успехом: удалось выявить более 170 генов, унаследованных предками диатомей от красных водорослей. Подавляющее большинство этих генов необходимо для работы хлоропластов. Этот результат -- очень весомый довод в пользу того, что сложившиеся на сегодняшний день представления о ранней эволюции эукариот в общих чертах верны.

В геномах диатомей нашлось также большое количество уникальных генов, аналогов которых нет у других живых организмов. Многие из этих новых генов возникли в результате дублирования и перетасовки фрагментов старых генов. По-видимому, важной движущей силой этих перекомбинаций была деятельность мобильных генетических элементов -- ретротранспозонов.

Самое удивительное, что в геномах диатомей обнаружилось очень много генов, которые явно были заимствованы диатомеями у различных прокариот: цианобактерий, протеобактерий, архей и других. В геноме Phaeodactylum обнаружено 587 таких заимствованных генов. На сегодняшний день это рекордное количество генов прокариотического происхождения, найденных в эукариотическом геноме. Более половины из этих генов (56 %) есть также и у Thalassiosira.Эти гены, скорее всего, были заимствованы диатомеями у бактерий довольно давно -- еще до расхождения эволюционных линий центрических и пеннатных диатомей. Остальные 44 %, по всей видимости, были заимствованы предками Phaeodactylum уже после этого события, то есть в течение последних 90 млн лет.

Бактериальные гены, по-видимому, значительно расширили биохимические возможности диатомей. Эти гены помогают диатомеям осуществлять ряд биохимических реакций, не свойственных другим эукариотам. Кроме того, они участвуют в построении ажурных кремневых раковинок -- главной «визитной карточки» диатомей, которая во многом обеспечила их эволюционный успех. Диатомеи «одолжили» у бактерий также и многие гены рецепторных и сигнальных белков, при помощи которых бактерии воспринимают сигналы из окружающей среды и реагируют на них. Среди заимствованных у бактерий рецепторов есть даже несколько светочувствительных белков, благодаря которым диатомеи могут реагировать на изменения освещенности.

Авторы предполагают, что активный обмен генами между диатомеями и бактериями был одной из главных причин быстрой эволюции диатомей и их эволюционного успеха. Полученные результаты говорят о том, что горизонтальный генетический обмен, по-видимому, играет в эволюции эукариот (по крайней мере одноклеточных) более важную роль, чем считалось до сих пор.

Филогения диатомовых водорослей.

Створки диатомовых водорослей не растворяются в большинстве природных вод, поэтому они осаждаются на протяжении последних 150 млн. лет, начиная с раннего мелового периода. Таким образом, есть основания полагать, что диатомеи появились до наступления мелового периода. Наиболее древние ископаемые диатомеи были центрическими, в то время как самые древние пеннатные были бесшовными из позднего мелового периода (около 70 млн лет назад). Останки шовных диатомей имеют более поздний возраст. Согласно ископаемым останкам пресноводные диатомеи появились около 60 млн лет назад и достигли расцвета в миоцене (24 млн лет назад). Палеонтологические данные подтверждают наличие более примитивных признаков в организации центрических диатомей, как древней группы, в то время как снабжённые швом пеннатные представляют вершину эволюции этой группы. Методами молекулярной биологии было показано, что диатомовые - монофилетичная группа, но внутри этой группы центрические диатомеи не формируют, как ранее считали, монофилетичную группу.

Наличие трёхчастных мастигонем на жгутике, строение хлоропластов, пигментные системы, трубчатые митохондрии, запасные продукты - всё это подтверждает несомненную принадлежность диатомовых водорослей к группе охрофитовых. Чаще всего дискутируется вопрос об их близости к другим классам этого отдела, так как наличие таких особенностей, как кремнезёмный панцирь, диплобионтный жизненный цикл, редукция жгутикового аппарата, особенности карио- и цитокинеза, значительно отличают диатомей от других представителей охрофитовых. Предполагали, что предками диатомей могли быть какие-то древние синуровые. Некоторые авторы даже рассматривали синуровых как "жгутиковых диатомей". Однако данные молекулярной биологии показывают, что среди страминопил диатомовые образуют достаточно обособленную группу, которая отстоит от других охрофитовых водорослей дальше, чем сами они отделены друг от друга, но всё-таки ближе к охрофитовым, чем к грибоподобным протистам. Анализ последовательности нуклеотидов генов SSU rDNA rbcL и пигментного состава показали, что внутри охрофитовых сестринской линией диатомовым является недавно открытая группа болидофициевых - окрашенных двужгутиковых монад, обитающих в океанах и морях.

Диатомовые относятся к группе гетероконтных водорослей, имеющих вторичные пластиды. По молекулярным данным установлено, что предком их пластид была красная водоросль.

3 Значение диатомовых водорослей в жизни человека

Использование диатомей в получение органических веществ.

В качестве создателей органического вещества в водоёмах диатомовые водоросли занимают второе место, после зелёных водорослей., а в зимнее время являются единственным источником органического вещества для животных обитателей водоёмов. Диатомеи - это единственный источник массового накопления кремнезёма, активно участвующие в круговороте водоёма.

Кроме всего прочего диатомовые водоросли являются естественными очистителями воды, что не мало важно в условиях постоянного загрязнения водоёмов сточными промышленными водами. Диатомеи можно использовать, как индикаторы засоленности вод, так первоопределяющим фактором их распространения является засоленность воды. В современных морях и океанах, а также в водоёмах суши в огромных масштабах идёт осаждение кремнезема; диатомовые водоросли играют в этом процессе главную роль, они извлекают растворенный кремнезем из воды для построения своих панцирей. В морских водоёмах кремнистые осадки накапливаются за счёт не только диатомей, но также радиолярий и других кремневых микроорганизмов, тогда как в континентальных водоёмах единственными организмами, поставляющими кремнезем в осадки, являются диатомей.

В качестве создателей органического вещества в водоёмах диатомовые занимают среди всех водорослей первое место. Составляя основную массу растительного планктона, они являются началом пищевой цепи. Их поедают беспозвоночные животные, также обитающие в планктоне, которых в свою очередь поглощает рыбная молодь, а её пожирают более крупные рыбы и другие животные. Некоторые взрослые рыбы и молодь питаются непосредственно диатомеями (сельдь, хамса, сардина и др.). В литературе отмечается, например, что улов сардины на побережье Индийского океана зависит от развития одного из видов фрагилярии (Fragilaria oceanica). Некоторые мелкие животные специализировались на питании определёнными видами бентосных диатомей. Например, инфузории родов хилодон,окситрихия и другие питаются главным образом видами навикула и потребляя по 30-40 экземпляров ежедневно, обилием диатомей определяется и развитие личинок хиромид.

Значения диатомовых водорослей очень велики. Они создают 50 % всей органической массы океана, ежегодно поглощая из мирового океана около 10 млрд. тонн углерода. Они играют основополагающую роль продуктивности водоёмов. В 100 гр. органического вещества содержится 40 % белков, 30 % углерода, 30 % липидов. Их калорийность составляет 525 кал. В составе белков присутствуют все незаменимые аминокислоты. Установлено, что питательная ценность планктонных диатомей велика и не уступает ценности пищевых растений, а в некоторых случаях даже превосходит её. В частности, содержание белков и жиров у них выше, чем в картофеле и хлебных злаках. По продуктивности их сравнивают с наземными травами и называют «пастбищем морей».

Диатомовые водоросли и нано технологии.

В настоящее время всё возрастающее внимание во всем мире уделяется перспективам развития нано технологий, то есть технологий направленного получения и использования веществ и материалов в диапазоне размеров до 100 нанометров. Особенности поведения вещества в виде частиц таких размеров, свойства которых во многом определяются законами квантовой физики, открывают широкие перспективы в целенаправленном получении материалов с новыми свойствами, такими как уникальная механическая прочность, особые спектральные, электрические, магнитные, химические, биологические характеристики.

Примерно 15 лет назад диатомовые водоросли привлекли внимание химиков, специализирующихся в области нано технологии. Помимо микроскопических размеров (рисунок 3), уникальным свойством диатомовых водорослей оказалось размножаться необычайно высокими темпами, и их разнообразие форм, и наличие крупных месторождений диатомита. Правда, наибольшее значение придается искусственно получаемым, «стандартизованным» материалам с кремнеземными структурами строго определенной формы. Они могли бы использоваться как уникальные фильтры, катализаторы и сорбенты с заданным размером пор, микрокапсулы для лекарств, упрочняющие наполнители композитов, дифракционные решетки оптических датчиков и др. Еще более захватывающие возможности открывает создание структур, повторяющих трехмерный кремнеземный скелет, но имеющих иной химический состав. Задача их создания к простым не относится: ведь кремнезем нерастворим в обычных минеральных кислотах, кроме фтористоводородной, и устойчив ко многим химическим реагентам. Недаром стеклянная посуда (а основа стекла - кремнезем и силикаты) много веков верой и правдой служит исследователям в химических лабораториях. Для решения задачи потребовались новые, матричные методы и не самые «ходовые» реагенты, но химики-неорганики уже провели первые эксперименты в этом направлении.

Сначала SiO2 удалось заменить на MgO, для этого диатомит выдерживали 4 часа в парах магния при 900°С. Реакцию можно выразить уравнением:

SiO2 (тв.) + 4Mg (г.) = 2MgO (тв.) + Mg2Si (ж.).

В оригинальной публикации указано, что силицид магния выделялся в жидком виде, что позволяло легко отделить его от основного продукта. Температура плавления Mg2Si превышает 1000°С, так что температура синтеза, вероятно, была более 900 °С. Получать трехмерные структуры с воспроизводимой геометрией другим путем, например послойным напылением с помощью молекулярных пучков, в принципе возможно, однако уж очень сложно и дорого.

Более впечатляющим успехом явилось создание трехмерной структуры, повторяющей скелет водоросли, но состоящей из анатаза - одной из форм TiO2. Диоксид титана - уникальное вещество, обладающее свойствами фотокатализатора. Развитая поверхность диоксида титана, его микропористая структура значительно усиливают каталитическое действие. Для замены кремния на титан, была использована:

SiO2 (тв.) + TiF4 (г.) = SiF4 (г.) + TiO2 (тв.)

Успеху способствовало то, что оба тетрафторида летучи (TiF4 сублимирует при нагревании до 285 °С, а SiF4 - всего при 91 °С).

Производство диатомовых изделий.

Для применения диатомовых водорослей в нано технологиях необходимо провести еще много исследований и опытов. А на сегодняшний день диатомит широко используется как сырьё для жидкого стекла, глазури, теплоизоляционного кирпича и др.; в качестве строительных тепло- и звукоизоляционных материалов, добавок к некоторым типам цемента; полировального материала (в составе паст) для металлов, мраморов и т.д.; как инсектицид, вызывающий гибель вредителей и т. д.; в качестве носителя катализаторов, в качестве наполнителя в чистящих и абсорбирующих средствах, удобрениях; и пенодиатомитовая крошка; для производства товарного бетона, строительных растворов и сухих строительных смесей различного назначения; являются природными активными минеральными добавками (АМД).

Рассмотрим получение пенодиатомитовыех изделий. Пример: кирпич пенодиатомитовый теплоизоляционный. Предназначен для тепловой изоляции сооружений, промышленного оборудования (электролизных ванн, плавильных печей, котлов, трубопроводов и т.п.) при температуре изолируемой поверхности до 900 0С. Кирпич относится к группе негорючих материалов и может быть использован для противопожарной защиты стальных, железобетонных и деревянных конструкций, а также в жилищном и гражданском строительстве. Кирпич пенодиатомитовый применяется в строительстве в качестве утеплителя на кровле, используется при возведении кирпичных перегородок и межквартирных ненесущих стен.

Применения активированного диатомита в сухих строительных смесях.

Диатомиты являются природными активными минеральными добавками (АМД) осадочного происхождения. Обладают высокой пористостью и являются хорошими инсектицидами. Эти свойства диатомитов широко используют при производстве товарного бетона, строительных растворов и сухих строительных смесей различного назначения.

Действие диатомитов, как активных минеральных добавок, основано на способности, содержащегося в них аморфного кремнезема, связывать известь в низкоосновные гидросиликаты кальция по схеме:

SiO2 + Ca(OH) + n(H2O) = (B) CaO SiO2 H2O

Известно, что способность связывать гидроксид кальция в присутствии воды при обычных температурах обусловлена содержанием в диатомитах веществ в химически активной форме, поэтому характер и интенсивность взаимодействия с известью различны в зависимости от количества аморфного SiO2, содержание которого в диатомитах может колебаться от 40 % до 100 % к общему количеству SiO2. В основном это определяется условиями и водной средой обитания диатомей, в которых происходило формирование их панциря.

Для оценки эффективности применения активированного диатомита были проведены сравнительные исследования строительно-технологических характеристик сухих строительных смесей с различными природными и техногенными АМД.

Использование АМД в составах сухих строительных смесей способствует формированию плотной структуры материала, благодаря чему наряду с повышением прочностных характеристик снижается проницаемость, повышается морозостойкость, стойкость к истиранию и эрозии, а также устойчивость материала к различным видам коррозии, что в конечном итоге определяет его высокую долговечность.

При определении активности различных минеральных добавок использовался метод, основанный на способности поглощения добавками извести из известкового раствора в течение 30 суток. Поглощение извести активированным диатомитом через 30 суток до 4 раз превышает аналогичный показатель природных АМД и на 60 % выше активности микрокремнезема. Наряду с высоким показателем активности в возрасте 30 суток для активированного диатомита наблюдалось интенсивное поглощение извести в первые 3 суток

Дальнейшие испытания проводились для составов cуxиx строительных смесей с различными АМД при замещении ими ПЦ в количестве 5,10,15%. Для снижения водопотребности в состав ССС вводиться суперпластификаторы различного типа.

Совместное использование СП и АДМ положительно влияет на прочность затвердевшего раствора в возрасте 28 суток. Однако в ранние сроки интенсивный набор прочности наблюдается только при использовании активного диатомита.

Наиболее эффективным является применение активированных диатомитов в количестве 3-10 % от массы цемента, при дальнейшем увеличении дозировки эффективность применения активированных диатомитов начинает снижаться. Для сравнения, максимальная эффективность применения микрокремнезема и природного диатомита находится в пределах 10-15 % от массы цемента, а для природных АМД вулканического происхождения, этот предел может увеличиваться до 20 %.

При оптимальной дозировке активированных диатомитов, используемых в сочетании с суперпластификаторами, благодаря их полифункциональному действию возможно получение составов сухих строительных смесей с высокими прочностными характеристиками, низкими усадочными деформациями, высокой морозостойкостью и стойкостью к различным видам коррозии.

Диатомовые водоросли – важный элемент в организации водной системы, который гармонично соединяет свойства животных и растений. Составляющей частью является диатомей, представляющий собой клетку, которая покрыта оболочкой из кремния. Как правило, этот вид водорослей предпочитает колониальную форму жизни.

В аквариуме их жизнедеятельность отражается в виде зелено-бурого, иногда серого либо коричневого налета. Диатомовые водоросли в аквариуме имеют огромное значение в организации мировой экосистемы. Водоросли производят большой объем органической массы, что заставило производителей биоматериалов и защитников природы обратить на них внимание. Диатомовые водоросли в аквариуме – это негативное явление, от которого следует избавляться при первых признаках возникновения. Но для этого нужно поближе «познакомиться» с этим видом водорослей, чтобы понять их устройство, принципы и назначение.

Диатомеи: вид вблизи

Мощные электронные микроскопы, которые позволяют увеличивать объект в тысячи раз, позволили изучить строение панциря диатомовой клетки. Главным компонентом панциря является диоксид кремния с различными примесями алюминия, железа, магния, органических веществ. Он представляет собой внешнюю оболочку, состоящую из двух частей – створок, зачастую они надвинуты друг на друга. В зависимости от вида, створки соединены непосредственно, или имеют разделитель в виде кремнистых ободков, которые позволяют створкам раздвигаться для увеличения объема клетки.

На внешней части панциря можно увидеть тонкий покров органического вещества. Створка имеет неоднородную поверхность, здесь можно увидеть углубления, ребра, штрихи, различные ячейки. В основном это поры или камеры. Практически вся площадь панциря (75%) покрыта отверстиями. Еще можно увидеть различные наросты, изначально их цель была не ясна, но потом ученые определили, что они предназначены для объединения в колонии.

Под микроскопом удалось открыть многообразие форм панциря:

  • диски;
  • трубочки;
  • цилиндры;
  • коробочки;
  • барабаны;
  • веретена;
  • шары;
  • булавы.

Створки также представлены в большом количестве разнообразных видов. Структурные элементы составляют сложные комбинации, а ведь это только одна клетка!

Строение диатомеи

Цитоплазма выполняет защитную функцию и образует тонкий слой по периметру стенок. Есть специфический мостик, в нем находится диплоидное ядро и ядрышки. Внутриклеточное пространство полностью занимает вакуоль. Хроматофоры расположены по всей длине стенок. Они представляют собой маленькие диски и пластины. Чем меньше их размер, тем больше количество. Гетеротрофные водоросли не имеют пигментов. Автотрофные диатомеи в своих хроматофорах хранят пластиды различных цветов.

Благодаря фотосинтезу образуются в клетке не привычные углеводы, как у всех наземных растений, а липиды. Помимо жиров, которые требуются для правильной жизнедеятельности, в организме имеются дополнительные компоненты и резервные вещества, например, хризоламинарин.

Размножение

Эти водоросли размножаются двумя способами:

  • вегетативным;
  • половым.

Скорость размножения достаточно большая, обычно представляет собой деление пополам. Темпы напрямую зависят от условий окружения. За сутки одна клетка может образовать около 35 миллиардов новых организмов. Этот вид водорослей населяет практически любой водоем в мире, они отлично себя чувствуют в озерах, реках, морях с умеренной температурой воды, хотя их не пугают горячие источники и ледяная вода. Диатомеи составляют с остальными подобными микроскопическими растениями основу фитопланктона всего Мирового океана.

Одно из самых важных свойств диатомовых водорослей – производство кислорода.

Виды

Какие-то виды проживают на дне, другие закрепляются к субстрату, например, ко дну морских кораблей. Очень часто они объединяются в многочисленные колонии, для скрепления используются специальные выросты либо слизь. Образование в колонии не случайно, таким образом микроорганизмы стараются противостоять негативным проявлениям окружающей среды. Существуют виды диатомей, которые живут только на субстрате одного типа, например, только на брюхе кита или только на определенном растении.

Есть виды диатомей, которые свободно передвигаются (парят) в воде за счет своей малой плотности, пористого панциря, вкраплений масла. Для большего эффекта на их тельце есть длинные щетинки, которые позволяют соединяться в большие плавучие колонии. Иногда для скрепления используется слизь, она легче воды.

Главные систематические группы

В отделе Bacillariophyta находится более 10 000 видов. Ведущие биологи мира утверждают, что это число на самом деле в несколько раз больше. За последнее столетие систематика диатомей претерпела немало изменений. Причем многочисленные споры и дискуссии ведутся и сейчас, главной темой является количество классов.

Центрические диатомеи

Водоросли данного класса имеют одноклеточные, а также колониальные формы. Скруглен панцирь, он имеет радиальное строение. Хроматофоры представлены как маленькие пластинки. Диатомеи центрического класса ведут неподвижный образ жизни. Размножаются половым моногамным способом. Представители центрических диатомей были обнаружены в остатках древности по всему миру.

Порядок Coscinodiscales. Иногда живут одиночками, но в основном в виде нитевидных колоний. Форма панциря не имеет углов, отсюда и название:

  • цилиндрическая;
  • шаровидная;
  • линзовидная;
  • эллипсоидная.

Створки округленные, на них находятся различные выросты, ребра и другие особенности поверхности.

Порядок Biddulphiales. Клетки-одиночки, но иногда соединяются в многочисленные колонии, для этого используются дополнительные наросты на панцире. Кстати, панцирь имеет форму, напоминающую цилиндр либо призму. Створки круглые, как правило, эллиптической формы, в некоторых случаях многоугольные. Створки неоднородной структуры, из-за присутствия мелких неровностей и отверстий.

Род хетоцерос. Цилиндрические клетки, с большими щетинками, расположенными на створках. Щетинки позволяют объединяться в цепи нитевидного типа. Хроматофоры имеют вид больших пластинок.

Перистые диатомеи

Одноклеточные водоросли, которые нередко объединяются в колонии, имеют разнообразную форму. Панцирь представляет собой две симметричные части (створки), хотя есть виды, где прослеживается четкая асимметрия. Как правило, створка обладает перистой структурой. Хроматофоры напоминают большие пластинки. Эта форма активна, имеет различные швы щелевидного и каналовидного типа. Размножение происходит обычным половым способом, но специфическим образом, который напоминает конъюгацию.

Происхождение

Диатомеи значительно отличаются от других представителей водных растений. После тщательных исследований пигментных пластин и процесса фотосинтеза, который протекает в клетках, удалось выяснить, что происходят эти организмы от представителей жгутиковых. Эта гипотеза нашла точные доказательства в способности диатомовых водорослей перерабатывать и производить вещества органического происхождения своими разноцветными пигментами.

Роль диатомовых водорослей в аквариуме

В природных экосистемах они выполняют огромнейшую роль, поскольку являются основной частью планктона и участвуют в формировании органических веществ планеты, а после отмирания их панцири участвуют в образовании горной породы. Несмотря на такое большое значение в природе, в аквариуме диатомовые водоросли пользы не несут. Коричневые водоросли, которые образуют налет на стенках, особенно в тех местах, куда попадает меньше всего света – это диатомеи.

Диатомовые обязательно «поселяются» в новом аквариуме, по истечению нескольких дней после наполнения водой. В старых аквариумах водоросли появляются при неправильном освещении, как правило, недостаточном или сильно слабом.

Для размножения диатомовых водорослей способствуют:

  • показатель рН больше 7,5;
  • высокий уровень жесткости воды;
  • чрезмерная концентрация соединений азота.

Вспышку развития водорослей может спровоцировать большое количество солей натрия в составе воды, обычно это происходит после лечения рыбок поваренной солью. С диатомеями следует систематически бороться, иначе они покроют все стенки искусственного водоема. Следует чистить камушки и приборы от слизи и бурых комочков, сразу после их появления. Чтобы предупредить развитие, необходимо контролировать уровень освещения, и проверять состав воды. Развитие диатомей будет проходить медленнее, если настроить освещение, и периодически очищать аквариум.

Отдел диатомовые водоросли (Bacillariophyta ) насчитывает более 20 тыс. видов. Это фотоавтотрофные тубулокристаты микроскопических размеров, с исключительно кокоидным талломом, имеющие покровы в виде кремнеземного панциря. Панцирь плотно примыкает к плазмолемме и состоит из двух час­тей: эпитеки и гипотеки . Бóльшая часть (эпитека) надвигается своими краями на гипотеку как крышка на коробку (рисунок 3.1). Эпитека состоит из плос­кой или выпуклой створки (эпивалъвы ) с загнутыми краями и пояскового ободка (эпицингулюма ). Гипотека имеет аналогичные части: створку (гиповальву ) с загнутыми краями и поясковый ободок (гипоцингулюм ). Поясковые ободки плотно прилегают друг к другу, составляя вместе поясок панциря. У большинства диатомовых между загнутым краем створки (загибом) и поясковым ободком образуются один или несколько вставочных ободков , которые увеличивают объем клетки и способствуют ее росту. Форма панциря разнообразна и характеризуется, в первую очередь, типом симметрии створки. Створки с множеством осей симметрии называют радиально-симметричными или актиноморфными . В противном случае ее называют зигоморфными . Зигоморфные створки бывают симметричными в продольном и поперечном направлении (бисимметричные ), симметричные лишь по одной оси (моносимметричные ), зеркально симметричными или асимметричными .


Наружный и внутренний рисунки панциря, наблюдаемые в световой и электронный микроскоп, называют структурой панциря. Она специфична для разных таксонов и образована различными структурными эле­ментами, из которых наиболее важными являются перфорации – система отверстий различного строения расположенных на створках, через которые происходит связь протопласта с внешней средой. Различают мелкие поры (ареолы ) и крупные удлиненные камеры, прикрытые перфорированной пленкой (альвеолы ). В створках панциря могут быть одна или две слизевые поры , через которые выделяется слизь, служащая для прикрепления водорослей к субстрату и образования колоний. Утолщения, выступающие над наружной или внутренней поверхностью створки, называются ребрами, они обеспечивают прочность панциря. У мно­гих диатомовых водорослей на внешней поверхности панциря образуются выступы, щетинки, шипы, шипики, которые увеличивают его поверхность и служат для соединения клеток в колонию. У подвижных диатомей на створковой стороне панциря имеется шов в виде пары сквозных щелей, а также узелки – два полярных и один центральный (представляют собой утолщения стенок створки). Подобная структура панциря наряду с небольшим объемом протопласта и многочисленными капельками масла обеспечивает парение диатомовых водорослей в толще воды. Через шов происходит выделение и циркуляция цитоплазмы, что обеспечивает реактивное передвижение водоросли.

Клетки представителей отдела имеют типичное эукариотическое строение . Цитоплазма в них образует пристенный слой либо скапливается у полюсов или в центре клетки, соединяясь цитоплазматическими мости­ками. Ядро лежит в центральной массе цитоплаз­мы или в пристенном слое, ближе к гипотеке (у центрических диатомей,), либо – в цитоплазматическом мостике в непосредственном контакте с хлоропластом, ближе к эпитеке (у пеннатных ) (Пояснение терминов центрические и пеннатные смотри далее по тексту). Митоз открытый, но вместо центриолей функцию организации веретена деления выполняют полярные диски . У ядра расположен комплекс Гольджи .

Пластиды (хлоропласты) вторично симбиотические, родофитного типа, четырехмембранные (две наружние мембраны организованы в хлоропластную эндоплазматическую сеть , непосредственно переходящую в оболочку ядра). Тилакоиды, собраны по три и иногда пронизывают пиреноид , имеется опоясывающая ламелла . Набор фотосинтетических пигментов: хлорофиллы а и с , β - и ε -каротины, ксантофиллы (фукоксантин, диатоксантин, неоксантины и диадиноксантин), что определяет цвет таллома от светло-желтого, золотистого до зеленовато-бурого. В клетке может быть несколько митохондрий с трубчатыми кристами. Вакуоли – четырех типов: с клеточным со­ком, с волютином , с хризоламинарином и с маслами (последние три компонента являются продуктами ассимиляции диатомовых).

Вегетативное размножение, наиболее характерное для диатомовых водорослей, осуществляется делением клетки надвое. Перед делением в протопласте скапливаются капли масла, он увели­чивается в размерах, раздвигает створки так, что они соприка­саются лишь краями поясковых ободков. Митотически делится ядро, а затем и весь протопласт. Каждой новой клетке достается одна створка панциря, являющаяся или становящаяся эпитекой, а гипотека достраивается. Многократные вегетативные деления приводят к прогрессивному умень­шению размеров клеток в популяции, поскольку клетки, получающие гипотеку материнской клетки (она становиться эпитекой), постоянно достраивают еще меньшую створку (собственную гипотеку). Восстановление первоначальных размеров клеток, характерных для данного вида, происходит во время прорастания покоящихся клеток, а также в результате полового процесса, сопровождающегося образованием ауксоспор (растущих спор). Ауксоспора увеличивается до максимально возможных для вида размеров, затем принимает типичную форму и образует панцырь. У ряда видов диатомовых водорослей ауксоспорообразование происходит за счет автогамии: после мейоза жизнеспособными остаются два ядра, которые и сливаются внутри своей клетки. Собственно бесполое размножение для диатомей не характерно, однако, некоторые виды способны формировть микроспоры, природа и пути образования которых пока не изучены.

Половой процесс – изо-, гетеро- (анизо-) или оогамия. В случае оогамии формируются единственная для диатомовых водорослей жгутиковая стадия – сперматозоид. Жгутик у него один, покрыт ретронемами, в его аксонеме отсутствуют центральные микротрубочки (формула 9+0, вместо 9+2), редуцирована корешковая система, где вместо триплетов имеются только дуплеты микротрубочек, базальное тело прижато к ядру. У некоторых диатомовых сперматозоид не имеет жгутика и передвигается с помощью псевдоподий. В случае изо- и гетерогамии гаметы безгутиковые и перетекают из оболочки одной материнской клетки в другую.

Жизненный цикл всех диатомей диплофазный с гаметической редукцией без смены поколений.

При неблагоприятных условиях диатомовые водоросли переходят в состояние покоя. При этом протопласт передвигается к одному из концов клетки, теряет клеточный сок и сильно сжимается. Жизнедеятельность этих клеток возобновляется при наступлении благоприятных условий. Некоторые планктонные озерные виды способны в таком состоянии пережидать зимний период на дне водоемов. У ряда видов наблюдается образование кремнеземных цист.

Диатомовые водоросли имеют широкое распространение и на­econdi различные биотопы: пресные и соленые, стоячие и текучие во­доемы, влажные скалы, почву и даже пахотные земли; способны обитать на снегу и льду. Роль в природе и практическое значение диатомовых водорослей очень велики: они участвуют в создании органического вещества и поглощении углерода из Мирового океана, входят в состав трофических цепей водных экосистем, участвуют в круговороте кремния и осадконакоплении, используются в экологическом мониторинге и археологическом датировании осадочных пород.

В основе систематики диатомовых водорослей лежит структура панциря, в первую очередь симметрия створок, наличие и строение шва. Отделподразделяется на три класса: косцинодискофициевые (центрические) – Coscinodiscophyceae (Centrophyceae ), фрагиляриофициевые (бесшовные) – Fragilariophyceae , бацилляриофициевые (шовные) – Bacillariophyceae . Два последних класса традиционно называют пеннатными диатомеями.

Класс косцинодискофициевые(Coscinodiscophyceae) объединяет водоросли с радиально-симметричными (актиноморфными) створками, лишенными шва (рисунок 3.2). В большинстве случаев створки округлые, поэтому часто их называют центрическими диатомеями. Половой процесс – оогамия. Класс включает 22 порядка.

Наиболее широко распространен порядок Melosirales , типичным представителем которого служит Melosira (рисунок 3.3). Клетки мелозиры цилиндрические, соединенные в колонии с помощью слизевых валиков, шипов или зубцов. Панцирь имеет высокие загибы створок и сложный поясковый ободок; створки круглые, с мелкими ареолами.

В жизненном цикле мелозиры наблюдается оогамный половой процесс . Половые структуры дифференцируются из вегетативных клеток. женская репродуктив­ная клетка (соответствует оогонию) мейозом, с последующей дегенерацией трех ядер, производит одну яйцеклетку. В мужской (соответствует сперматогонию или антеридию) – сначала образует четырехжгутиковая сперматогенная клетка, которая после мейоза отпочковывает четыре одножгутиковых сперматозоида. После оплодотворения из зиготы образуется ауксоспора.

Представители класса фрагиляриевофициевые, или бесшовные, (Fragillariphyceae ) характеризуются зигоморфными створками панциря, лишенными шва и отсутствием жгутиковых стадий в жизненном цикле. Половой процесс изо-, гетерогамия, только для видов рода Rhabdonema известен оогамный половой процесс, но сперматозоид при этом безжгутиковый, передвигающийся с помощью псевдоподий.

Известно 12 порядков фрагиляриефициевых водорослей. Типичный порядок – фрагиляриальные (Fragilariales ), с наиболее часто встречающимися представителями родов Fragilaria, Tabellaria , Asterionella (рисунок 3.4).

У рода фрагилярия (Fragilaria ) клетки часто образуют очень длинные лентовидные колонии. Створки панциря линейные, с поперечными штрихами. Клетки рода астерионелла (Asterionella ) палочковидные, одним концом створки соединены в звездчатые или спирально завитые гребневидные ленты. Створки линейные, часто с головчато расширенными концами. У представителей рода табеллярия (Tabellaria ) створки со стороны пояска имеют вид табличек, соединенных в зигзагообразные колонии. Створки линейные, расширенные на концах и на середине. В случае гетеропольных панцирей (полюса клетки разной формы), как у рода меридион (Meridion ), колонии могут принимать вееровидную форму.


Похожая информация.


Диатомовые водоросли - одноклеточные одиночные или колониальные организмы микроскопических размеров, характерной особенностью которых является наличие кремнистых панциря. Они могут иметь радиальную или

двустороннюю симметрию тела (ил. 29.1). Хлоропласты этих растений имеют желтовато-бурую окраску, которое определяется наличием зеленых, бурых и желтых пигментов.

Большинство диатомовых водорослей является автотрофами. Размножение в них в основном бесполое, что происходит делением клетки на две.

Диатомовые водоросли живут везде: в пресных и соленых водоемах, на болотах, на камнях и скалах, в почве и на почве, на снегу и льду, на коре стволов деревьев. Они встречаются даже на глубине 350 м, где укрывают дно (ил. 29.2).

В природе диатомовые водоросли играют важную роль, являясь ценным источником пищи для многих мелких обитателей водоемов. С отмерших диатомовых водорослей образуются большие отложения горных пород, которые человек использует для изготовления фильтров, порошков для шлифовки металлов, а также как материал для звуковой и тепловой изоляции.

Какие общие особенности диатомовых водорослей?

Клетки диатомовых водорослей покрыты кремнистых панцирем, состоящим из двух половинок. Большая половинка накрывает меньше, как крышечка от коробки с кремом. В панцире есть норы, через которые обеспечивается обмен веществ с окружающей средой. Через них в клетку водоросли поступают питательные вещества, кислород, углекислый газ и т.п.. В двобичносиметричних диатомовых водорослей створки довольно часто имеют продольную щель - шов, благодаря которому они способны к скользящему движению. Такие движения могут осуществляться в ответ на механические воздействия, в направлении к свету, теплу и т.д.. Водоросли с радиальной симметрией, не имеют шва, не двигаются (ил. 29.3). Многие диатомовых водорослей способны выделять слизь. С помощью слизи водоросли образуют

Ил. 29.3. Различные варианты строения слизистые трубки, ножки для прикрепления к диатомовых водорослей дна водоема или подводных предметов, а также объединяются в колонии.

Большинство видов диатомовых водорослей является автотрофами. Но некоторые из них, которые живут на неглубоких участках морского дна, могут быть гетеротрофами и поглощать из воды готовые органические вещества. Крахмал в диатомовых водорослей не образуется, запасные вещества в них откладываются в виде масла, увеличивает плавучесть планктонных видов в толще воды. Однако пайзагальнишою признаком диатомовых водорослей является наличие кремнистых панциря, который состоит из двух половинок.

Чем отличаются различные группы диатомовых водорослей?

К диатомовых водорослей относят более 20 видов водорослей. В зависимости от строения и формы панциря различают диатомовые водоросли с радиальной (например циклотела) и двусторонней (например пинулярия) симметрией. Если через створку панциря можно провести несколько осей симметрии, такую створку называют радиально-симметричной. Когда через створку можно провести только одну ось симметрии, створку называют двобичносиметричною. Самыми известными среди диатомовых водорослей является навикула, пинулярия и некоторые другие.

Навикула имеет створки напоминают челнок (ил. 29.4). По средней линии створок проходит прямой щелевидный шов, в котором происходит движение слизи, что приводит движение клетки. Виды рода Навикула входят в состав бентоса пресных и соленых водоемов, а также живут в почве и горячих источниках. Пинулярии - одноклеточные диатомовые водоросли (ил. 29.5). Створки в них имеют удлиненную форму с закругленными концами. Шов в пену-лярии тянется вдоль клетки. В его концах и в средней части есть три утолщения-вуз-лики. Панцири у видов этого рода в основном крупные, клетки не способны удерживаться в толще воды, поэтому эти водоросли накапливаются в большом количестве на дне водоемов. Итак, диатомовые водоросли различаются по строению и форме панциря.

Какое значение диатомовых водорослей в природе и жизни человека?

Диатомовые водоросли в природе - это важнейшие производители органических веществ. На них приходится около 25% всей мировой массы этих соединений, которая создается растениями планеты. Поэтому диатомовые водоросли являются главным источником пищи для пресноводных и морских животных. Кроме того, отмирая, они становятся источником питательных веществ для питания бактерий и простейших животных. Установлено, что питательная ценность диатомей не уступает питательной ценности картофеля и хлебных злаков, а содержание белков и жиров в них даже выше.

В водоемах диатомовые водоросли активно участвуют в разрушении подводных сооружений, мостов и др.. Они забивают водопроводные трубы и приходится тратить значительные средства для их очистки с помощью сильного давления или химических растворителей. Наземные диатомовые водоросли играют заметную роль в почвообразовании. Панцири диатомовых водорослей с тонким орнаментом используют для настройки оптических приборов и проверки их качества. Кремнистые панцири отмерших диатомовых водорослей накапливались миллионы лет, образовав мелкозернистый порошок, который называется диатомовым илом. Этот порошок используется в технике для полировки изделий, а также для фильтрации веществ. С панцирей ископаемых диатомовых водорослей образовались залежи осадочных пород - диатомита, доломита и трепела. Некоторые виды являются индикаторами загрязнения морской воды различными отходами и нефтепродуктами, поэтому их используют для оценки санитарного состояния прибрежных вод (ил. 29.6). Итак, диатомовые водоросли занимают чрезвычайно важное место в природе, поскольку является постоянной кормовой базой и начальным звеном в цепи / сих питания для многих организмов. Значение диатомовых водорослей для человека определяется их участием в почвообразовании и накоплении осадочных пород, которые человек использует для своих нужд.

  • 3. Сине-зеленые водоросли. Особенности строения клетки. Характер питания, размножения. Основные представители, распространение, значение.
  • 4. Зеленые водоросли. Разнообразие типов талломов, способов размножения, основные представители, распространение и значение.
  • 5. Класс Коньюгаты, или сцеплянки. Общая характеристика. Порядок Зигнемовые. Порядок Десмидиевые.
  • 6. Класс Харовые. Общая характеристика.
  • 7. Класс золотистые водоросли. Строение, размножение, порядки, основные представители, распространение, значение
  • 8. Диатомовые водоросли. Особенности строения клетки, размножение, распространение, значение. Основные представители
  • 9. Желтозеленые водоросли. Общая характеристика. Порядки.
  • 10. Бурые водоросли. Строение, размножение, классы, основные представители, распространение, значение
  • 11. Динофитовые водоросли. Общая характеристика.
  • 12. Эвгленовые водоросли. Общая характеристика.
  • 13. Красные водоросли. Строение, размножение. Классы, основные представители. Распространение, значение
  • 14. Значение водорослей в природе и жизни человека.
  • 15. Грибы. Общая характеристика. Грибной таллом. Отделы грибов. Образ жизни и распространение.
  • 17. Хитридиевые грибы. Особенности строения, способы размножения, способы питания, основные порядки и важнейшие представители, распространение, значение
  • 18. Зигомицеты. Особенности строения, способы размножения, способы питания, основные порядки и важнейшие представители, распространение, значение
  • 19. Сумчатые грибы. Особенности строения, способы размножения, способы питания, основные порядки и важнейшие представители, распространение, значение
  • 20. Базидиальные грибы. Особенности строения, размножения, способы питания, основные порядки и важнейшие представители. Распространение и значение
  • 21. Лишайники. Особенности строения, размножения, образа жизни, важнейшие представители. Распространение и значение.
  • 22. Слизевики. Особенности строения, размножения, образа жизни, важнейшие представители. Распространение и значение.
  • 8. Диатомовые водоросли. Особенности строения клетки, размножение, распространение, значение. Основные представители

    Диатомовые водоросли - совершенно особая группа одноклеточных организмов (около 16 000 видов), резко отличающаяся от остальных водорослей: их клетки снаружи окружены твердой кремнеземной оболочкой - панцирем. Это одноклеточные микроскопические организмы, одиночные или колониальные в виде цепочек, нитей, звездочек, коккоидный тип структуры таллома. Размеры отдельных особей от 4 мкм до 2 мм. Клеточная оболочка - панцирь из кремнезема - оксида кремния с тонким слоем пектиновых веществ. Поры, строение панциря, эпитека, гипотека, поясковое кольцо, шов. Наличие панциря у диатомовых предопределило интересные особенности строения их клеток, образа жизни и размножения. Окраска водорослей зависит от набора пигментов, среди которых преобладают бурые - каротин, ксантофилл и диатомин, маскирующие в живой клетке хлорофиллы а и с. Запасные питательные вещества: масло, волютин, лейкозин. Механизм движения диатомовых.

    Различают две эволюционные линии диатомовых, которые различаются прежде всего по форме створок панциря - центрические (Centrophyceae) и пеннатные (Pennatophyceae). Это два класса этого отдела.

    Центрические имеют радиально-симметричные створки панциря, большинство обитает в толще воды, тип полового процесса у них – оогамия. Класс Центрические - клетки одиночные или соединенные в нитевидные колонии. Створки в очертаниях круглые, ареолы расположены беспорядочно или радиально, по краям створок выросты, шипы, щетинки. Преимущественно морские водоросли.

    Пеннатные имеют не более 2-х плоскостей симметрии, иногда только одну плоскость симметрии, многие подвижны, подавляющее большинство населяет дно водоемов. Пеннатные диатомовые продуцируют амебоидные гаметы, тип полового процесса изогамия и анизогамия. Класс Пеннатные - панцирь симметричный по продольной оси. Створки линейные, ланцетные, элиптические. Это пресноводные и морские формы, обитающие в бентосе на различных субстратах.

    Цитоплазма, вакуоли, ядро, хлоропласты. У большинства центрических они мелкие и зерновидные. У пеннатных хлоропласты обычно крупные пластинчатые, по 1-2 на клетку. Окружены хлоропласты четырьмя мембранами. Тилакоиды в хлоропластах группируются в ламеллы по 3, имеется опоясывающий тилакоид. Окраска хлоропластов имеет различные оттенки желто-бурого цвета. Пигменты диатомовых: хлорофиллы a и c, каротиноиды. Питательные вещества накапливаются в цитоплазме в виде капель липидов, гранул хризоламинарина.

    Размножение. Все диатомовые диплоидны, мейоз гаметический.

    Твердый панцирь обусловливает интересные особенности размножения диатомовых водорослей. Наиболее обычный способ – деление клетки на 2 половины. Характеристика процесса деления и его последствия.

    Восстановление исходных размеров клетки происходит в результате полового процесса, приводящего к образованию ауксоспор (растущих спор). Предположительно, образование ауксоспор связано с мельчанием клеток в результате их деления и необходимости восстановления размеров. Ауксоспорообразование всегда связано с половым процессом.У пеннатных диатомей сближаются две клетки, створки раздвигаются, происходит редукционное деление ядер, после чего гаплоидные ядра разных клеток попарно сливаются и образуется одна или две аукоспоры (остальные гаплоидные ядра редуцируются).У центрических водорослей аукоспора образуется из одной клетки, в которой сначала происходит деление материнского диплоидного ядра на четыре гаплоидных ядра, два из них редуцируются, а два сливаются, образуется зигота, которая без стадии покоя резко увеличивается в размерах, образует аукоспору. После созревания аукоспоры в ней развивается новая клетка, у которой сначала формируется эпитека, затем гипотека. Все диатомовые водоросли - диплоидные организмы.

    Половой процесс изогамный, анизогамный и оогамный. Изо- и анизогамный процесс осуществляется посредством лишенных жгутиков гамет. При оогамном процессе мужская гамета имеет жгутик. Жгутик этот уникален тем, что не имеет центральных микротрубочек. Особенности полового процесса центрических и пеннатных диатомовых.

    Экологические особенности. Диатомовые водоросли обитают повсюду: в различных типах водоемов, на почве, камнях и скалах, в снегу, на поверхности и в мелких углублениях, трещинах, льда. Иногда в этих условиях они развиваются в таких массах, что окрашивают его в бурый цвет. В почве обитают и вне воды обитают только подвижные формы. Основное место обитания диатомей – водная среда. Разнообразно представлены диатомовые в континентальных водоемах, а также в морских водах. Большинство диатомовых является холодолюбивыми формами, поэтому наиболее интенсивного развития диатомовые водоросли достигают весной и осенью. Диатомеи служат постоянной кормовой базой и первоначальным звеном в пищевых целях для многих организмов. Питательная ценность планктонных диатомей велика, в частности содержание белков и жиров выше, чем в картофеле и хлебных злаках. Некоторые виды служат хорошими индикаторами загрязнения морской воды различными стоками и нефтепродуктами, их используют при оценке санитарного состояния прибрежных морских вод. Диатомовые водоросли играют первостепенную роль в осадконакоплении - диатомовые илы. Известна порода «диатомит», которая на 50-80% состоит из панцирей диатомовых водорослей. Благодаря пористости и адсорбционной способности диатомиты используются в пищевой, химической и медицинской промышленности и в строительстве. Систематика диатомовых водорослей. Класс Centrophyceae – центрические диатомовые Радиально-симметричные створки панцирей, неподвижные. Большинство обитает в толще воды. Тип полового процесса у них – оогамия. Chaetoceros, Cyclotella, Melosira

    Класс Pennatophyceae – пеннатные диатомовые билатерально-симметричные створки панцирей, со швом и без шва, формы, обладающие швом, подвижны. подавляющее большинство населяет дно водоемов. Пеннатные диатомовые продуцируют амебоидные гаметы, тип полового процесса изогамия и анизогамия. Pinnularia, Navicula.

    Наиболее распространены из диатомей:

    Навикула (Navicula), створки лодочкообразные с острыми или суженными концами.

    Пиннулярия (Pinnularia), створки удлиненно-элиптические со швом и хорошо заметной штриховатостью.

    Цимбелла (Cymbella), створки серповидно-изогнутые.

    Навикула, пиннулярия и цимбелла являются бентосными водорослями, относятся к классу Пеннатных. Из центрических планктонных можно встретить в наших водоемах циклотеллу (Cyclotella), одиночные клетки которой выглядят в виде низкой круглой коробочки.

    Выбор редакции
    1.1 Отчет о движении продуктов и тары на производстве Акт о реализации и отпуске изделий кухни составляется ежед­невно на основании...

    , Эксперт Службы Правового консалтинга компании "Гарант" Любой владелец участка – и не важно, каким образом тот ему достался и какое...

    Индивидуальные предприниматели вправе выбрать общую систему налогообложения. Как правило, ОСНО выбирается, когда ИП нужно работать с НДС...

    Теория и практика бухгалтерского учета исходит из принципа соответствия. Его суть сводится к фразе: «доходы должны соответствовать тем...
    Развитие национальной экономики не является равномерным. Оно подвержено макроэкономической нестабильности , которая зависит от...
    Приветствую вас, дорогие друзья! У меня для вас прекрасная новость – собственному жилью быть ! Да-да, вы не ослышались. В нашей стране...
    Современные представления об особенностях экономической мысли средневековья (феодального общества) так же, как и времен Древнего мира,...
    Продажа товаров оформляется в программе документом Реализация товаров и услуг. Документ можно провести, только если есть определенное...
    Теория бухгалтерского учета. Шпаргалки Ольшевская Наталья 24. Классификация хозяйственных средств организацииСостав хозяйственных...