Проверка качества строительных материалов. Контроль качества строительной продукции, конструкций, работ и материалов


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное государственное бюджетное образовательное учреждение высшего образования

"Национальный исследовательский мордовский государственный университет им. Н.П. Огарёва"

(ФГБОУ ВО "МГУ им. Н.П. Огарёва")

Архитектурно-строительный факультет

Контрольная работа

по дисциплине "Обследование и испытание зданий и сооружений"

на тему " Контроль качества строительных материалов и конструкций "

Выполнила: студентка 501 гр. з/о

Специальность: "Строительсво-62"

Шафеева И.К.

Проверил: Лукин А.Н.

Саранск 2016

План

  • Введение
  • 1. Метод проникающих сред
  • 2. Механические методы испытаний
  • 3. Метод пластической деформации
  • 4. Метод упругого отскока
  • 5. Метод отрыва со скалыванием и скалывания ребра конструкции
  • 6. Акустические методы испытаний
  • 7. Метод ударного импульса
  • 8. Магнитные методы испытания
  • 9. Индукционный метод
  • 10. Инфракрасный метод испытания
  • 11. Радиоизотопный метод испытания
  • 12. Электрофизические методы испытания
  • 13. Использование геодезических приборов и инструментов при освидетельствовании и испытания конструкций

Введение

Существенное повышение качества строительных материалов, изделий и конструкций может быть достигнуто при условии совершенствования производства и методов контроля качества на всех этапах строительного производства.

Контроль качества строительных материалов, изделий и конструкций производится двумя основными способами .

1) Состоит в выявлении предельных несущих способностей объектов, что связано с доведением их до разрушения . Этот способ эффективен при проведении стандартных испытаниях образцов из стали, бетона и других конструкционных материалов. При испытании моделей сооружений и их фрагментов конструкции могут доводиться до предельных состояний. Что же касается реальных объектов, то их разрушение для выявления предельных несущих способностей экономически не всегда оправдано.

2) Связан с производством испытаний неразрушающими методами, что позволяет сохранить эксплуатационную пригодность рассматриваемого объекта без нарушения его несущей способности . Этот способ наиболее приемлем при обследовании зданий и сооружений, находящихся в эксплуатации. Неразрушающими методами можно, например, определить влажность заполнителей бетона, степень уплотнения бетонной смеси в процессе формования, плотность и прочность бетонов в изделиях, провести дефектоскопию конструкций.

Неразрушающие методы испытаний построены в основном на косвенном определении свойств и характеристик объектов и могут быть классифицированы по следующим видам:

- метод проникающих сред , основанный на регистрации индикаторных жидкостей или газов, находящихся в материале конструкции;

- механические методы испытаний , связанные с анализом местных разрушений, а также изучением поведения объектов в резонансном состоянии;

- акустические методы испытаний , связанные с определением параметров упругих колебаний с помощью ультразвуковой нагрузки и регистрацией эффектов акустоэмиссии;

- магнитные методы испытаний (индукционный и магнитопорошковый) ;

- радиационные испытания , связанные с использованием нейтронов и радиоизотопов;

- радиоволновые методы , построенные на эффекте распространения высококачественных и сверхчастотных колебаний в излучаемых объектах;

- электрические методы , основанные на оценке электроемкости, электроиндуктивности и электросопротивления изучаемого объекта;

- использование геодезических приборов и инструментов при освидетельствовании и испытаниях конструкций.

Кратко рассмотрим каждый из перечисленных методов.

1. Метод проникающих сред

Основаны на проверке непроницаемости кровли с помощью невязких жидких или легко обнаруживаемых газообразных сред, которые находят сквозные отверстия и каналы в водоизоляционном ковре и беспрепятственно проникают сквозь кровлю сверху вниз или наоборот. К таким методам относятся дымовой , газовый , вакуумный , а также оросительный и гидростатический методы, каждый из которых имеет определенную область применения, свои преимущества и недостатки. Дымовой метод . Предназначен для испытания рулонных кровель с механическим креплением к воздухонепроницаемому основанию.

Метод основан на закачивании под испытываемый участок водоизоляционного ковра дымовоздушной смеси от дымогенератора с помощью электрического компрессора или вентилятора через приклеенный к водоизоляционному ковру (над отверстием) патрубок. Смесь выходит в атмосферу через трещины и другие сквозные повреждения в кровле и визуально обнаруживается, указывая на места протечек. При повышении давления дымовоздушной смеси под кровлей кроме герметичности можно проверить качество ее крепления к основанию. Недостатком метода является необходимость устройства отверстий в водоизоляционном ковре для закачивания под него дыма, а преимуществом - большая площадь кровли, которая может быть испытана за один раз.

2. Механические методы испытаний

К механическим неразрушающим методам контроля относятся: метод пластических деформаций, метод отрыва со скалыванием и скалывания ребра конструкции и метод упругого отскока. Применение данных методов, позволяет получить достоверную оценку прочности строительных материалов, не нарушая целостность элементов конструкций. Назначение необходимого количества контролируемых участков и их расположение осуществляется в соответствии с ГОСТ 18105-86, а также из конструктивных особенностей конструкций (в наиболее нагруженных и поврежденных участках) и условий доступности к ним.

3. Метод пластической деформации

Ряд приборов, позволяющих определить твердость поверхностного слоя бетона с использованием метода пластической деформации достаточно разнообразен. При проведении работ по обследованию зданий и сооружений применяются следующие приборы:

Шариковый молоток И.А. Физделя: определение прочности сводится к нанесению серии ударов по предварительно подготовленной поверхности (не менее пяти) и замеру диаметров отпечатков. После статистической обработки определяется кубиковая прочность бетона на сжатие с использованием тарировочной кривой. Прибор характеризуется малой трудоёмкостью проведения испытания, но относительно не высокой точностью показаний за счёт большой вариации силы удара.

Эталонный молоток Кашкарова: его рабочим органом является шарик подшипника диаметром 15 мм, твердостью не менее 60 HCR. Эталоном служит стальной стержень Ш 10, из арматурной стали класса А-I. Выполняя замеры диаметров отпечатков - на эталоне и на бетоне, с точностью не менее 0,1 мм, определяем их соотношение. По среднему арифметическому значению этих отношений при пяти ударах и тарировочным кривым определяем кубиковую прочность бетона на сжатие. Тарировочные кривые, составлены для бетона влажностью 2 - 6%. При отклонении фактической влажности материала от данных значений выполняется корректировка, полученных значений прочности бетона. Точность измерения прочности молотком Кашкарова составляет ±15%.

4. Метод упругого отскока

здание сооружение неразрушающий испытание

Метод упругого отскока заимствован из практики определения твердости металла. Для испытания бетона применяют приборы, называемые склерометрами, представляющие собой пружинные молотки со сферическими штампами. Молоток устроен так, что система пружин допускает свободный отскок ударника после удара по бетону или по стальной пластинке, прижатой к бетону. Прибор снабжен шкалой со стрелкой, фиксирующей путь ударника при его обратном отскоке. Энергия удара прибором должна быть не менее 0,75 Н-м; радиус сферической части на конце ударника - не менее 5 мм. Проверку (тарировку) приборов проводят после каждых 500 ударов.

При проведении испытаний после каждого удара берут отсчет по шкале прибора (с точностью до одного деления) и записывают в журнал. Требования к подготовке участков для испытаний, к расположению и количеству мест удара, а также к экспериментам для построения тарировочных кривых такие же, как в методе пластической деформации.

Для определения прочности бетона методом упругого отскока используем склерометр ОМШ-1. Принцип действия прибора основан на ударе с нормированной энергией бойка о поверхность бетона и измерении высоты его отскока в условных единицах шкалы прибора, являющейся косвенной характеристикой прочности бетона на сжатие.

Для поверки склерометра ОМШ-1 применяется наковальня ОН-1. Наковальня предназначена для эксплуатации в закрытых помещениях.

Наковальня состоит из массивного цилиндрического основания, в которое запрессован пуансон из закалённой стали, и направляющей гильзы, закреплённой на основании и обеспечивающей требуемое положение склерометра при ударе.

5. Метод отрыва со скалыванием и скалывания ребра конструкции

Определение прочности материала осуществляется с помощью ПОС-50МГ 4 "Скол". Данный метод является наиболее точным, по сравнению с другими существующими неразрушающих методов определения прочности бетона. Метод отрыва со скалыванием основан на линейной (в достаточно широком диапазоне) зависимости между сопротивлением бетона одноосному сжатию и отрыву конусного фрагмента бетона в поперечном направлении. Данный метод применяют для корректировки (тарировки) в натурных условиях градировочных зависимостей других механических средств неразрушающего контроля по ГОСТ 22690 обладающих меньшей трудоёмкостью при проведении испытаний.

Использование метода скалывания ребра позволяет определять прочность бетона путем местного (локального) разрушения (скалывания) выступающего ребра (угла). Преимущество этого способа перед методом отрыва со скалыванием состоит в том, что он не требует сверления скважин в бетоне. Метод получения значений прочности бетона путем его скалывания ребра учитывают не только прочностные свойства растворной составляющей бетона, но и влияние крупного заполнителя на его сцепление с раствором. На каждом участке проводят не менее двух сколов, расстояние между которыми в осях должно быть не менее 200 мм. Величину скола определяют как среднее арифметическое значение. Этот метод применяют для определения прочности как тяжёлого, так и лёгкого бетона в диапазоне от 10 до 70 МПа.

6. Акустические методы испытаний

При определении прочности бетона ультразвуковым методом используем электронный ультразвуковой прибор Пульсар 1.1, работа которого основана на импульсном ультразвуковом методе. Этот метод относится к физическим методам определения прочности бетона, который нашел широкое применение для неразрушающих испытаний железобетонных конструкций. Данный метод основан на измерении скорости распространения в бетоне продольных ультразвуковых волн и степени их затухания.

Скорость ультразвука связана функциональной зависимостью с динамическим модулем упругости бетона первого рода.

Значение можно вычислить по формулам, если известны длина ультразвуковой волны в бетоне, поперечные размеры тела и измеренная в опыте скорость ультразвука.

Для среды, ограниченной одним измерением, т.е. для плит прозвучиваемых с торцов (л больше габаритов), p - плотность бетона; м - коэффициент Пуассона, принимаемый для бетона равным 0,16-0,2.

Для среды, ограниченной двумя измерениями, т.е. для стержней, прозвучиваемых с торцов (больше поперечных размеров стержня), значение находится из выражения:

Прочность бетона на сжатие устанавливается по вычисленным значениям с помощью заранее установленных экспериментальным путем зависимостей для бетонов определенного состава. Эти зависимости обычно выражают в виде тарировочного графика "прочность бетона - динамический модуль упругости".

Следует иметь в виду, что тарировочные зависимости между и, а также между и можно использовать с достаточной точностью только для определения бетонов, для которых строились эти зависимости. Расчет прочности по тарировочным графикам, формулам и таблицам, полученным для бетонов других составов, может привести к значительным ошибкам. Точность определения прочности бетона импульсным методом с применением тарировочных кривых составляет 8 - 15%. Определение прочности бетона по скорости ультразвука производится согласно ГОСТ 17624-87 "Бетоны. Ультразвуковой метод определения прочности".

С помощью ультразвукового импульсного метода можно выявить внутренние дефекты конструкции (пустоты, каверны, участки с пониженной плотностью) и определить глубину трещин.

7. Метод ударного импульса

Специалистами предприятия ООО НПП "Инженер-Строй" применяется прибор ИПС - МГ 4. Он предназначен для неразрушающего контроля прочности бетона, железобетонных изделий, конструкций и строительной керамики (кирпича) методом ударного импульса в соответствии с ГОСТ 22690-88. Прибор позволяет также оценивать физико-механические свойства строительных материалов в образцах и изделиях (прочность, твердость, упруго-эластические свойства), выявлять неоднородности, зоны плохого уплотнения и др. Прибор соответствует обыкновенному исполнению изделий третьего порядка по ГОСТ 12997-84*, относится к нестандартным средствам измерений и является рабочим средством измерений. Цикл замеров на одном участке состоит из 10 …15 замеров. После выполнения 15 замеров прибор автоматически производит обработку результата. Прибор производит математическую обработку результатов которая включает в себя: усреднение результатов, отбраковку результатов, более чем ±10% отклонения от среднего значения прочности на участке (изделий), усреднение оставшихся после обработки измерений. По окончанию цикла измерения прибор представляет результат.

Устройством для обнаружения дефектов методами неразрушающего контроля в изделиях из различных металлических и неметаллических материалов, является дефектоскоп . Дефектоскопы используются на транспорте, в различных областях машиностроения, в химической промышленности, нефтегазовой промышленности, в энергетике, строительстве, в научно-исследовательских лабораториях для определению свойств твердого тела и молекулярных свойств и в других отраслях; применяются для контроля деталей и заготовок, сварных, паяных и клеевых соединений, наблюдения за деталями агрегатов.

8. Магнитные методы испытания

С помощью магнитометрического метода, основанного на взаимодействии магнитного поля с введенным в него ферромагнетиком - феррозондом (металлом) можно определить расположение и сечение арматуры, размер защитного слоя бетона. Магнитные методы нашли широкое применение для построения газоанализаторов на кислород, магнитная восприимчивость которого на два порядка превышает восприимчивость других газов.

Схема кулонометрической установки для определения толщины гальванопокрытий, они основаны на принципе вихревых токов, изменении магнитного потока, изменения силы притяжения магнита.

Применяют в основном для неразрушающего контроля изделий из ферромагнитных материалов, находящихся в намагниченном состоянии.

Основаны на измерении силы отрыва магнита от поверхности деталей из ферромагнитного металла, покрытых слоем немагнитного или слабомагнитного материала, либо на измерении магнитного потока в цепи, образованной сердечником электромагнита, покрытием и металлом детали.

Магнитные методы применительно к исследованию монокристаллов протеинов; характер связи металла с инсулином.

Находят широкое применение в решении проблем химии, металлургии и геологии.

Магнитопорошковая дефектоскопия изделий из ферромагнитных материалов - разработка технологий неразрушающего контроля, подбор магнитных порошков и концентратов магнитной суспензии, определение максимально достижимой чувствительности контроля, разработка технологии размагничивания деталей и конструкций сложной конфигурации, количественная оценка уровня допустимой остаточной намагниченности деталей и агрегатов. Магнитопорошковым методом могут контролироваться также стыковые сварные соединения, в том числе соединения, полученные электронно-лучевой сваркой.

- Магнитная толщинометрия - контроль толщины любых немагнитных покрытий, наносимых на ферромагнитные детали; контроль толщины магнитных покрытий (Ni, Co и др.), нанесенных на немагнитные или слабомагнитные материалы.

- Магнитная структуроскопия - контроль физико-механических характеристик; сортировка сталей по маркам; контроль качества термической обработки (структуры или твердости).

Неразрушающий контроль небольших партий изделий с целью обнаружения тонких, невидимых глазом поверхностных дефектов материала типа трещин (закалочных, сварочных, шлифовочных, усталостных, штамповочных, литейных и др.), волосовин, флокенов, закатов, заковов, надрывов, рихтовочных трещин, некоторых видов расслоений и др.

Наряду с деталями, имеющими механически обработанные поверхности, контролю могут подвергаться детали, выплавленные методами точного литья (корковое литье, литье по выплавляемым моделям и др.). При этом обнаруживаются трещины, неспаи, рыхлоты и другие дефекты, а также цепочки пор.

9. Индукционный метод

Индукционными магнитными методами измеряют по существу наведенный в детектирующих катушках потенциал, возникающий при воздействии на образец переменного поля.

Специалистами предприятия ООО НПП "Инженер-Строй" применяется прибор ИПА - МГ 4, который позволяет измерять толщину защитного слоя бетона или определения диаметр арматурного стержня. Прибор оборудован выносным щупом, который плавно перемещают по поверхности контролируемого объекта, добиваясь минимального значения цифрового кода нижней строки индикатора и максимального тона звукового сигнала. Также, зная расположение оси и диаметр арматурного стержня, определяется толщина защитного слоя и соответственно наоборот, зная величину защитного слоя, определяется диаметр арматуры.

10. Инфракрасный метод испытания

Его можно применять при поиске скрытых протечек в рулонных кровлях с любым основанием. Инфракрасный метод позволяет определить местонахождение скоплений влаги в верхних слоях покрытия поиском зон повышенных температур поверхности кровли, поскольку участки покрытия, содержащие влагу, имеют более высокую теплопроводность и теплоемкость, чем сухие участки. В теплое время года тепловая энергия от солнца лучше поглощается влажными участками покрытия и затем сохраняется в течение нескольких часов после заката, поэтому при осуществлении инфракрасного метода кровлю, как правило, сканируют ночью. Основными преимуществами инфракрасного метода являются достигаемая сплошность обследования кровли и высокая производительность, а недостатками - высокая стоимость инфракрасных камер, существенная зависимость метода от погоды, возможность его применения только в ночное время суток (как правило, до полуночи).

11. Радиоизотопный метод испытания

Предпочтительнее других методов применять при проверке влагосодержания балластных и инверсионных кровель. Ограничено применение метода на кровлях из материалов, в состав которых входят углеводороды (в том числе битум). Метод основан на проверке присутствия водородных молекул (водяного пара) в верхних слоях покрытия. Метод осуществляется с помощью радиоизотопного влагомера, который способен определять влажность материала по количеству медленных отраженных нейтронов (выпущенных из быстрого нейтронного источника), так как при увеличении влажности материала количество отраженных нейтронов увеличивается, и показания радиоизотопного влагомера, соответственно, возрастают. Преимуществом метода является возможность его применения в широком диапазоне погодных условий и при любом уклоне кровли, а недостатком - его экологическая опасность.

Результаты выполняемого в Ростовском государственном строительном университете исследования по совершенствованию методов дефектоскопии строительных конструкций подтверждают работоспособность. А также достаточную эффективность каждого из представленных в данной статье методов и позволяют рекомендовать их (с учетом указанных преимуществ и ограничений по использованию) для массового применения при выявлении скрытых протечек в рулонных кровлях как строящихся, так и эксплуатируемых зданий.

12. Электрофизические методы испытания

Основаны на проверке электроизоляционных свойств водоизоляционного ковра, которые резко ухудшаются в местах скрытых протечек кровли. К таким методам относятся метод разности потенциалов, а также высоковольтный и емкостной методы. Метод разности потенциалов (низковольтный метод ). Предназначен для обнаружения скрытых протечек в кровлях, в которых водонепроницаемый ковер не является электрическим проводником, а основание выполнено из металла или железобетона.

Поиск скрытых протечек осуществляют измерением разности потенциалов в различных точках переменного электрического поля, создаваемого на поверхности кровли с помощью низковольтного импульсного генератора тока (напряжением до 40 В), один из выводов которого соединен с основанием кровли. А другой - с электропроводящим контуром (из гибкого неизолированного электрического провода), укладываемым на смоченную водой поверхность обследуемого участка кровли (рис. 2).

Применение метода особенно эффективно на участках кровли, где протечки продолжались в течение продолжительного времени и ее основание оказалось обильно смоченным водой. Недостатком метода является невозможность его осуществления на участках кровли с выступающими над ее поверхностью заземленными элементами инженерного оборудования из электропроводных материалов.

Высоковольтный метод . По области применения и физической сущности высоковольтный метод подобен низковольтному методу. Отличие первого метода от второго заключается в том, что на поверхность кровли подается положительный высоковольтный заряд с безопасным по величине электрическим током (от аккумулятора или источника постоянного тока), причем не на электропроводящий контур, а на щеточный электрод с щетиной из медной проволоки (рис. 3). Положительными сторонами метода являются достаточно высокая его производительность, а также возможность точно определять местонахождение скрытых протечек. Недостаток метода - невозможность его применения при обследовании кровель в утепленных покрытиях и кровель с защитным слоем из гравия или с загрязненной поверхностью.

13. Использование геодезических приборов и инструментов при освидетельствовании и испытания конструкций

Для выявления деформаций зданий, вызванных неравномерной осадкой фундаментов (крена, прогиба, выгиба, перекоса), отклонений от проектного положения конструкций из-за ошибок при их возведении (смещения в плане и по высоте, наклон и др.) и составления исполнительных планов здания применяют геодезические методы обследования.

Основными инструментами при этом являются высокоточные или точные нивелиры, теодолиты высокой и средней точности, фототеодолиты , нивелирные рейки , мерные ленты.

Размещено на Allbest.ru

...

Подобные документы

    Основные способы осуществления контроля качества строительных материалов, изделий и конструкций, их характеристика, оценка преимуществ и недостатков. Использование геодезических приборов и инструментов при освидетельствовании и испытании конструкций.

    реферат , добавлен 25.01.2011

    Определение общего состояния строительных конструкций зданий и сооружений. Визуально-инструментальное обследование, инженерно-геологические изыскания. Определение физико-химических характеристик материалов конструкций. Диагностики несущих конструкций.

    курсовая работа , добавлен 08.02.2011

    Железобетон, как композиционный строительный материал. Принципы проектирования железобетонных конструкций. Методы контроля прочности бетона сооружений. Специфика обследования состояния железобетонных конструкций в условиях агрессивного воздействия воды.

    курсовая работа , добавлен 22.01.2012

    Структурированные системы мониторинга и управления инженерными системами зданий и сооружений. Источники данных и контроль состояния конструкций. Алгоритмы, применяемые при мониторинге строительных конструкций. Датчики, применяемые в системах мониторинга.

    курсовая работа , добавлен 25.10.2015

    Особенности работы и разрушения каменных и армокаменных конструкций. Определение их прочности и технического состояния по внешним признакам. Влияние агрессивных сред на каменную кладку. Мероприятия по обеспечению долговечности промышленных зданий.

    курсовая работа , добавлен 27.12.2013

    Расчеты строительных конструкций. Расчет несущей способности изгибаемого железобетонного элемента прямоугольной формы, усиленного двусторонним наращиванием сечения. Усиление ленточного фундамента. Усиление кирпичного простенка металлическими обоймами.

    курсовая работа , добавлен 16.04.2008

    Оценка технического состояния как установление степени повреждения и категории технического состояния строительных конструкций или зданий и сооружений, этапы и принципы ее проведения. Цели обследования строительных конструкций, анализ результатов.

    контрольная работа , добавлен 28.06.2010

    Частичный или полный ремонт деревянных конструкций. Методика обследования деревянных частей зданий и сооружений. Фиксация повреждений деревянных частей зданий и сооружений. Защита деревянных конструкций от возгорания. Использование крепежных изделий.

    презентация , добавлен 14.03.2016

    Рассмотрение особенностей испытания современных строительных конструкций статической нагрузкой. Ознакомление с измерительными приборами для статических и динамических испытаний. Изучение основных правил обработки измеренных с помощью приборов величин.

    реферат , добавлен 01.04.2015

    Основные виды нарушений в строительстве и промышленности строительных материалов. Классификация дефектов по основным видам строительно-монтажных работ, при производстве строительных материалов, конструкций и изделий. Отступления от проектных решений.

Контроль качества материалов в строительстве это один из самых важных и необходимых процессов, который для вас смогут провести специалисты независимой организации НП "Федерация Судебных Экспертов". Бывает много случаев, когда после сдачи сооружения, через некоторое время на частях конструкции возникают различные дефекты. Это свидетельствует о том, что при сооружении объекта использовались некачественные строительные материалы. Иногда, решение вопроса доходит до судебного разбирательства между заказчиком и подрядчиком. Для избежания таких ситуаций необходимо проводить контроль качества строительных материалов.

Большинство различных дефектов в строительных конструкциях происходит по причине несоблюдения действующих строительных инструкций и правил. Во время строительных работ нужно учитывать, что качество строительных материалов - это основной фактор, который влияет на рентабельность и экономичность законченного сооружения. Качественные материалы так же обеспечивают прочность и надежность конструкции в целом. Поэтому контроль качества материалов является одним из ключевых видов в производственном контроле. При запланированном и систематическом осуществлении контроля в строительстве специалисты вовремя смогут выявить различные допущенные нарушения и разработать меры по их устранению.

Своевременное выявление нарушений позволяет уберечь конструкцию от серьезных дефектов, которые устранить в дальнейшем будет очень тяжело. Помимо этого на крупных объектах и при значительных объемах работ компания осуществляет лабораторный контроль. Он проходит в лабораториях с применением новейшего оборудования. Через лабораторный контроль происходит проверка качества всех поступающих на строительство материалов и изделий (цемента, труб, уплотнителей и так далее). Эти материалы проверяются экспертами на соответствие ГОСТам, техническим условиям, нормам и сертификатам. Для проведения контроля качества материалов в строительстве применяются так же различного рода механические, физические и химические методы исследования.

Отдел строительной экспертизы при НП "Федерация Судебных Экспертов" использует только качественное оборудование, которое предназначено, для проведения таких работ как:

  • выявление дефектов использованных материалов при ремонте, реконструкции или строительных работах.
  • отбор строительных образцов.
  • оценка геометрических параметров объемов строительных работ, которые уже выполненные.
  • входной контроль качества, который включает в себя исследования характеристик: растворов, бетона, сварных соединений, металлов, арматуры из стали, стеновых материалов, изделий из дерева и так далее.

Помимо этого специалисты исследуют теплопроводность строительных элементов и геометрические параметры строительных изделий заводского производства.

Весь комплекс работ проводится только квалифицированными экспертами при помощи сертифицированных приборов. При осуществлении контроля эксперты используют следующие приборы:

  • Электронные и механические молотки склерометры, которые используются обычно для проверки бетона на прочность.
  • Измерители защитного слоя и локаторы арматуры, которые используются для определения глубины и размеров арматуры, водопроводных и газовых труб, проволочной обвязки, штифтов и кабелей. Применение этих приборов позволяет определить точные размеры и местоположение подповерхностных объектов, что сводит к минимуму риск поломки строительного инструмента, труб, кабелей и частей конструкции. Определение скрытых конструкций, обнаружение металлических объектов, проводов и труб помогает сберечь строительный инструмент от порчи, а так же техногенных аварий, связанных повреждением коммуникаций.
  • Специальные приборы для измерения дефектов покрытия на строительном объекте. Использование этого прибора позволяет своевременно определить пористость покрытия, и тем самым уберечь его от коррозии и разрушения.
  • Камеры, в которых испытываются строительные материалы на прочность и стойкость к атмосферным воздействиям. Обычно в камере эксперты проводят исследования частей конструкции и различные материалы (облицовочные материалы, кирпич, бетонные блоки, плитка).

Так же необходимым является прибор для тестирования адгезии покрытий. Тестирование адгезии позволяет определить степень связи покрытия с поверхностью, на которую специалисты его наносят. Этот прибор еще применяется для проведения контроля качества и выявления различных дефектов покрытия.

После проведения исследования эксперты составляют заключение, в котором указывают наличие или отсутствие дефектов в строительных материалах. Наличие нарушения является основанием для замены материалов или же компенсации денежных средств. В судебном разбирательстве заключение специалиста является основным доказательством виновности или невиновности подрядчика или поставщика. Проведение контроля качества материалов в строительстве очень важное, так как оно помогает избежать негативных последствий после окончания строительства объекта.

Все работы, которые предоставляет НП "Федерация Судебных Экспертов" являются сертифицированными и выполняются согласно действующих положений и нормативно-правовых актов. В компании работают эксперты с большим опытом предоставления услуг в осуществлении производственного контроля. Они используют при проведении исследования только новейшее оборудование, которое дает самые точные результаты, а так же значительно ускоряет процесс проведения экспертизы. Так же в организации функционирует юридический отдел, который предоставляет правовую помощь по всем интересующим вопросам осуществления контроля. Эксперты независимой организации НП "Федерация Судебных Экспертов" проведут для Вас экспертизу за умеренную плату.


Аварийные ситуации могут возникать на давно эксплуатируемых, новых и недостроенных зданиях и сооружениях. Основной причиной аварий зачастую становится использование второсортных материалов и низкий уровень качества строительных работ. Своевременно и правильно выполненный контроль качества строительной продукции помогает избежать многих проблем, связанных с такими, очевидными на первый взгляд, просчетами.

Почему контроль качества строительной продукции необходим?

Во время стихии (землетрясения, наводнения, урагана) видимым проявлением низкого качества выполненных когда-то строительных работ становятся большие масштабы разрушений. Повреждаются здания и сооружения, деформируются инженерные конструкции. Все это красноречиво говорит об отсутствии своевременного внимания к контролю качества строительной продукции, материалов, конструкций и работ.

Результаты проверок, проводимых по факту таких разрушений, дают понять, что речь идет не о случайных ошибках, а о систематических нарушениях:

  • дефектах узловых сопряжений в каркасных зданиях;
  • использовании неравнопрочных рабочих стержней арматуры в стыках колонн;
  • замене ванной сварки арматуры сваркой стыков с применением односторонних накладок, сопряжении арматуры внахлест или двухсторонними накладками с меньшей длиной сварочного шва;
  • применении несейсмического исполнения строений.

В конечном счете, такие дефекты, не идентифицированные (или скрытые) в процессе строительства и успешной сдачи объекта в эксплуатацию, становятся «миной» замедленного действия, приводя в самый неподходящий момент к катастрофическим последствиям. Причем ущерб измеряется как в экономическом выражении, так и в жизнях людей.

Наши преимущества:

Согласно данным НИИ экономики строительства допущение ошибок проектной документации и дефектов во время проведения строительно-монтажных работ, вызывают удорожание сметной стоимости работ и приводят к незапланированным эксплуатационным затратам в размере до 20%. В итоге, статистика ежегодно показывает наличие нескольких сотен зданий, имеющих дефекты, которые нельзя оставить просто так, а нужно исправлять.

Общеизвестно, что не допустить всегда дешевле, чем устранить. Поэтому и необходим контроль качества строительных конструкций, продукции, материалов и работ.

Предотвращая будущие потери – внутренний строительный контроль

Для того чтобы предотвратить нежелательные последствия от большей части потенциальных просчетов во время строительства, применяют контроль качества строительных работ, контроль качества строительных материалов и строительной продукции.

Проведение строительного контроля всегда связано с необходимостью выполнения целого ряда измерительных работ с допустимой погрешностью измерений. Поэтому для выполнения таких работ используют специальное измерительное оборудование, и применяют определенные методы. Все это позволяет достичь единства и точности измерений. Итак, хорошее метрологическое обеспечение строительства является важным шагом на пути к достижению для улучшения экономических показателей.

При контроле качества строительной продукции применяют результаты производственного контроля. При этом используют инструкции по оценке качества СМР. Строительный контроль, в зависимости от времени проведения, можно разделить на:

  • входной;
  • операционный;
  • приемочный.

Входной контроль осуществляется на стадии поступления строительных материалов на строительную площадку. В данном случае проверяется факт соответствия продукции ТУ, стандартам, паспортам; правильность разгрузки материалов и их складирования.

Операционный контроль проводят в ходе технологических операций и при их завершении. Проводится постоянно для своевременного выявления дефектов и немедленного их устранения. На данной стадии проверяют соблюдение технологии строительства и соответствие чертежам, СНиПам и стандартам.

Приемочный контроль выполняют для оценки качества отдельных строительных этапов или по завершении строительства всего объекта. При проведении такого контроля составляют акты на выполнение скрытых работ и акты по приемке конструкций. Все это имеет решающее значение для качества и безопасности строительного объекта.

Внешний контроль качества

Если в приемочном контроле качества берут участие третьи лица, такой контроль может считаться внешним. Но классически к внешнему контролю также относят технадзор со стороны заказчика, авторский надзор, контроль приемной комиссии при сдаче объекта в эксплуатацию и архитектурно-строительный надзор со стороны государства. Как правило, это обязательные виды контроля.

АНО «Центр Строительных Экспертиз» успешно выполняет любые виды работ, связанные с осуществлением контроля качества строительной продукции. Специалисты, входящие в нашу структуру, выполняют свою работу в соответствии со всеми требованиями проектной документации к проверяемому объекту. В ходе контроля ведется мониторинг таких показателей, как: объемы, стоимость, технологические приемы, методы и качество строительно-монтажных работ. Все показатели сверяются с нормативами, заложенными в сметах, законодательных нормах и стандартах.

Результаты работы специалистов АНО «Центр Строительных Экспертиз» независимы от третьих лиц. Точность проведенных замеров гарантирована применением современного метрологического оборудования, имеющего все необходимые поверки и аттестацию. Обследование и оценка технического состояния объекта, строительных конструкций и инженерных сооружений обеспечена современной научно-технической базой.

Чтобы узнать, как заказать контроль качества строительной продукции, цены и сроки выполнения работ, свяжитесь с нами в любое время суток.

ОПЫТ РАБОТЫ С 1993 ГОДА

БЕСПЛАТНЫЕ КОНСУЛЬТАЦИИ

ГРАМОТНЫЕ И ЧЕСТНЫЕ СПЕЦИАЛИСТЫ

НАДЁЖНОЕ ОБОРУДОВАНИЕ

ПОСТОЯННАЯ ОБРАТНАЯ СВЯЗЬ С ЗАКАЗЧИКОМ

В процессе возведения гражданских и промышленных объектов большую роль играют их основные качественные характеристики, которые могут напрямую влиять на дальнейшую эксплуатацию этих зданий и сооружений. Существенное влияние на такие показатели оказывает степень добротности используемых стройматериалов. Контроль их качества позволяет установить, соответствует ли данная продукция нормативам, установленным в отраслевой категории. Подобные проверки позволяют избежать появления строительных дефектов, которые могли бы воспрепятствовать или затруднить дальнейшее использование объекта.

КАК МЫ РАБОТАЕМ

мы вам звоним

ЗАКЛЮЧАЕМ ДОГОВОР

ПРОВЕДЕНИЕ РАБОТ

ВЫ ОСТАВЛЯЕТЕ ЗАЯВКУ

ПРОИЗВОДИМ РАССЧЕТ

СТОИМОСТИ

ПОЛУЧЕНИЕ

ДОКУМЕНТОВ

КАК МЫ РАБОТАЕМ

ВЫ ОСТАВЛЯЕТЕ ЗАЯВКУ

МЫ ВАМ ЗВОНИМ

ПРОИЗВОДИМ РАССЧЕТ СТОИМОСТИ

ЗАКЛЮЧАЕМ ДОГОВОР

ПРОВЕДЕНИЕ РАБОТ

ПОЛУЧЕНИЕ ДОКУМЕНТОВ

Виды контроля




Свойства и технические характеристики продукции являются важными для результатов ее применения. Входной контроль выполняется при получении стройматериалов, предусматривает проверку их соответствия стандартам и нормам, а также определение правильности хранения на складе. Операционный осуществляется при технологических процессах и после их окончания, имеет целью выявление и незамедлительное устранение дефектов. Приемочный предназначен для оценки качества этапов строительства и включает подготовку соответствующих актов. Каждый вид контроля играет большую роль в последующей эксплуатации здания.

Стоимость услуг

Цена зависит от перечня технических требований в соответствии, с которыми осуществляется процедура, количество самих процедур. Уточнить стоимость Вы можете по телефонам 8-499-191-29-08, 8-499-191-34-05, 8-925-307-56-25 или написать на электронную почту [email protected]

Наименование испытания/Вид работ Ед. Стоимость за единицу, руб., без НДС
Неразрушающие методы контроля прочности бетона
1 -метод упругого отскока 1 участок от 300,00
2 -метод ударного импульса 1 участок от 300,00
3 - метод отрыва со скалыванием 1 точка от 1000,00
4 Прочность бетона на сжатие по контрольным образцам (100х100х100 мм), от 490,00
5 Прочность бетона на сжатие по контрольным образцам (150х150х150 мм 1 серия (не менее двух образцов) от 550,00
6 Прочность бетона на сжатие по контрольным образцам (200х200х200 мм) 1 серия (не менее двух образцов) от 620,00
7 Водонепроницаемость 1 серия (не менее шести образцов) от 3000,00
8 Влажность 1 точка от 170,00

Мы проводим испытания следующих материалов

Какие испытания мы проводим

Процедура испытаний может носить как оперативный характер, так и включать многоэтапную процедуру. Проводятся данные тесты в подготовленной для таких целей лаборатории, оснащенной современным испытательным оборудованием.

  • Основные испытания проводятся на предмет выявления возможных дефектов и несоответствия нормативным требованиям стройматериалов – щебня, природного камня, бетонных блоков, песка, труб, металла, раствора для швов и других разновидностей.
  • Контроль качества строительных материалов проводится также на предмет установления их физических характеристик – способности впитывать воду, устойчивости к низким температурам, прочности, плотнос

Наши сертификаты

Несмотря на то, что в обозначении упоминается только сырье, под проверку попадает не только конечный результат, но так же анализ соблюдения технологических режимов в процессе возведения постройки. Выделяют несколько видов норм проверки: входная, операционная, приемочная, инспекционная.

Нередко можно услышать, что качество - категория философская. Возможно это и так, но только в том случае, если речь не идёт о строительстве, точнее, о качестве строительных материалов и конструкций. В этом случае оно уже из философских категорий переходит в разряд житейских. Ведь каждый из нас, можно сказать, кровно заинтересован, чтобы наши квартиры, дома, здания торговых и развлекательных центров, промышленных предприятий, офисов и так далее были построены исключительно из качественных материалов, со строгим соблюдением всех технологий. Только тогда мы будем уверены, что все эти здания и помещения не перейдут из категории «крепость» и «защита» в категорию «опасность». Поэтому-то и необходимо, чтобы строительные организации своевременно обращались в соответствующие органы, проводящие экспертизу и технической документации, и качества строительных материалов. В такие, например, как Автономная некоммерческая организация «Центр независимых испытаний и экспертизы в строительстве» (АНО ЦНИЭС).

Как самостоятельная экспертная организация АНО «ЦНИЭС» была создана в 2003 году при поддержке Министерства строительного комплекса Московской области и в настоящее время является одной из авторитетных экспертных организаций в сфере строительства. За годы своей деятельности коллектив Центра приобрёл богатый опыт в оценке соответствия продукции и работ в строительстве, проведении сертификации, экспертиз, обследовании зданий и сооружений, испытаний и исследований, метрологического обеспечения. Сегодня АНО ЦНИЭС имеет в своей структуре пять подразделений: орган по сертификации промышленной продукции в строительстве – «Мособлстрой-сертификация», центры экспертизы проектной документации, строительно-технической экспертизы и обследований зданий и сооружений, испытательный центр и метрологическую службу.

Высокая компетентность АНО «ЦНИЭС» базируется на использовании современной базы Испы-тательного центра и передовых методик проведения испытаний с применением средств измерений, прошедших в соответствии с российским законодательством метрологическую поверку (калибровку) или аттестацию. А собственная метрологическая служба занимается метрологическим обеспечением строительства, то есть выполняет мероприятия, связанные с использованием научных и организационных методов, норм и правил, оборудования, необходимых для достижения единства и точности измерений в процессе проектирования, строительства и эксплуатации зданий и сооружений.

Орган по сертификации АНО «ЦНИЭС» проводит работы по подтверждению соответствия промышленной продукции в строительстве требованиям технических регламентов, положениям стандартов, сводов правил или условиям договоров в соответствии с областью аккредитации в форме сертификации и в форме принятия от заявителя декларации о соответствии и её регистрации. В область его аккредитации включены следующие виды промышленной строительной продукции: изделия железобетонные и бетонные, заполнители, нерудные материалы, арматурные и закладные изделия для железобетонных конструкций, бетоны и растворы, стеновые, а также отделочные и облицовочные материалы, минеральные вяжущие вещества, окна и двери, профили, стеклопакеты клеёные, прокладки уплотняющие пенополиуретановые и из эластомерных материалов для оконных и дверных блоков, металлические конструкции и изделия, детали каркаса здания, теплоизоляционные материалы, деревянные конструкции и изделия, кровельные, гидроизоляционные и герметизирующие материалы и изделия, передвижные сборно-разборные подмости, геотехническая пластиковая решётка «Прудон-494», листы из полиэтилена, структурные листы из поликарбоната и др.

Относительно новым направлением деятельности стала для АНО «ЦНИЭС» негосударственная экспертиза проектной документации. Но работа Центра в этом направлении уже получила оценку «отлично» у заказчиков, благодаря высокой компетентности и опыту работы экспертов, проводящих экспертизу проектной документации строительных объектов различного назначения на высоком профессиональном уровне в определённые условиями договора сроки. При проведении экспертизы используется комплексный подход. Специалисты АНО «ЦНИЭС» могут сопровождать строительство от нулевого уровня (от раскопки котлована и заливки фундамента) до сдачи под ключ. Если есть необходимость, то непосредственно на стройке организуются посты, на которых проводится входной контроль, операционный и т.д. Либо специалисты Центра приезжают на объект в определённые сроки, чтобы проверить качество выполненных работ. Когда сдаётся объект, готовится полный пакет документов, в том числе и отчёты о проведении проверки-испытаний определённых строительных конструкций и материалов. Сотрудники АНО «ЦНИЭС» также проводят промежуточные операции, делают по ним отчёты, которые затем входят в комплект документации, необходимой для сдачи объектов строительства.

Выбор редакции
1.1 Отчет о движении продуктов и тары на производстве Акт о реализации и отпуске изделий кухни составляется ежед­невно на основании...

, Эксперт Службы Правового консалтинга компании "Гарант" Любой владелец участка – и не важно, каким образом тот ему достался и какое...

Индивидуальные предприниматели вправе выбрать общую систему налогообложения. Как правило, ОСНО выбирается, когда ИП нужно работать с НДС...

Теория и практика бухгалтерского учета исходит из принципа соответствия. Его суть сводится к фразе: «доходы должны соответствовать тем...
Развитие национальной экономики не является равномерным. Оно подвержено макроэкономической нестабильности , которая зависит от...
Приветствую вас, дорогие друзья! У меня для вас прекрасная новость – собственному жилью быть ! Да-да, вы не ослышались. В нашей стране...
Современные представления об особенностях экономической мысли средневековья (феодального общества) так же, как и времен Древнего мира,...
Продажа товаров оформляется в программе документом Реализация товаров и услуг. Документ можно провести, только если есть определенное...
Теория бухгалтерского учета. Шпаргалки Ольшевская Наталья 24. Классификация хозяйственных средств организацииСостав хозяйственных...