Строительство и проектирование волс. Проектирование волоконно-оптических линий связи Проектирование оптоволокна


ВОЛС - волоконно-оптическая линия связи - считается на сегодняшний день самым быстрым и современным способом передачи информации. Сами кабели изготавливаются либо из специального пластика, либо из стекла, и имеют минимальный коэффициент затухания, благодаря которому информация может передаваться быстро и на огромные расстояния. ВОЛС принципиально отличаются от привычных систем тем, что в них используется свет, а не электрический ток.

Именно ей отдают предпочтения все жители Москвы, для которых важны бесперебойность, скорость и надёжность. Пока ничего лучше оптического волокна наукой предложено не было .

Цены на ВОЛС

Преимущества ВОЛС по сравнению с «традиционными» сетями

  • Широкая полоса пропускания . ВОЛС передают данные со скоростью до нескольких терабайт в секунду, а это значительно быстрее того, на что способны те же медные провода.
  • Практически полное отсутствие затухания . Для переправления данных при помощи оптических систем не требуются усилители. В 2009 году американцы провели испытания, в ходе которых им удалось передать данные на расстояние 7000 км со скоростью 15,5 Тбит/с без использования ретрансляторов. Этот эксперимент демонстрирует огромнейшие перспективы «оптики». Кроме того, на её работу не влияют всевозможные электрические помехи.
  • Надёжность и защищённость . Оптоволоконный кабель защищён от внешнего воздействия благодаря отсутствию радиоизлучения - перехватить данные можно только взломав целостность самого кабеля, а это, по понятным причинам, едва ли останется незамеченным.

«Оптика» имеет долгий срок службы, компактна, легка и пожаробезопасна. Среди существенных минусов оптического волокна можно выделить только относительную дороговизну и некоторую хрупкость материала, поэтому устанавливать ВОЛС необходимо с чётким соблюдением инструкций.

Сфера применения ВОЛС в Москве

Москва - один из самых «продвинутых» российских городов в плане применения оптоволоконных систем. Здесь их давно и стабильно применяются для прокладки СКС в современных офисных зданиях, бизнес-центрах, даже новостройках.

Оптоволокно применяется для внешней прокладки, внутренней прокладки, а также как кабели для шнуров. В первом случае оно обеспечивает связь между двумя или более зданиями, во втором - обеспечивает коммуникационную инфраструктуру отдельно взятого здания, а в третьем - используется в качестве горизонтальной разводки до рабочего места или комнаты.

ВОЛС проводятся в больницах и на военных объектах, на заводах и промышленных предприятиях, где особенно ценится тот факт, что оптическое волокно никак не связано с электричеством. Его выбирают для себя частные жители и владельцы предприятий в Москве, управленцы в социально-административных и государственных учреждениях. На ВОЛС постепенно переходят все, кому важны инновации, и кто хочет идти в ногу со временем.

ПРОЕКТИРОВАНИЕ ВОЛС

Лекция ПВОЛС - 1.



Общие требования к проектам

Лекция ПВОЛС - 2.

Блок №2

Общие требования к проектам

Основные требования это:

Высокое качество,

Схема организации связи,



Расчёт длины РУ,

Стадийность проектирования

1- разработка ТЭО,

Литература:

Лекция ПВОЛС - 3.

Блок №3

Лекция ПВОЛС - 4.

Блок №4

Траншейный способ

Традиционная прежняя технология: прокладка кабеля с заглублением в дно в разработанную траншею: с использованием средств гидромеханизации: землечерпалки, землесосы, гидромониторы, экскаваторы.

Существует подводная прокладка кабеля (дюкера) с помощью подводного кабелеукладчика ПКУ-3. Это автоматизированный самоходный комплекс, за один проход делает траншею глубиной 2.2м и шириной 300мм. Укладывает в траншею кабель и замывает его грунтом. Скорость 10-300м/ч. В водоёмах глубиной до 100м. Рабочий орган - баровая цепь.

Ещё для бестраншейной прокладки в русле рек применяют гидравлический (струйный) кабелезаглубитель (кабелеукладчик) с фиксированной глубиной опускания ножа под контролем водолазов (СК “эпрон-8”).

В общей стоимости кабельного перехода подводные работы составляют 70-80%.

Охранные зоны кабелей на судоходных путях ограждаются по ГОСТ-26600-85 “Знаки и огни навигационные внутренних водных путей ” Запрещающие знаки “Подводный переход” устанавливают в 100м выше по течению и в 100м ниже по течению от створа для предупреждения судоводителей о запрещении отдачи якорей. Знаки располагаются попарно, на обоих берегах, так, чтобы каждая их пара образовала створ, направленный поперёк реки – границу охранной зоны.


Рис 1. Технологическая схема перехода через водную преграду методом горизонтально-направленного бурения.

1 – буровая установка;

2 – буровая головка;

3 – кривой переходник и датчик управления;

4 – буровая колонна для бурения направляющей (пилотной) скважины – совокупность всех свинчивающихся вместе буровых шахт (3-6м);

5 - расчётная траектория прохода пилотной буровой скважины;

6 – расширитель скважины с шарниром;

7 – труба;

h – расчётная глубина заложения труб.


Рис 2. Выполнение речного перехода методом ГНБ.

1 – буровая труба,

2 – расширитель,

3 – серога,

4 – трубопровод.


Рис 3. Схема резервирования ВОЛС при переходе через реки.

Лекция ПВОЛС - 5.

Блок №5

Стадийность проектирования.

Разработку проектно-сметной документации (ПСД) осуществляют в 2 стадии.

1стадия. Разработка технического проекта (ТП).

2стадия. Разработка рабочей документации (РД), содержащей рабочие чертежи и схему расходов. Схема документации имеет важную роль в составе проектных материалов, так как одной из основных задач проектирования является определение стоимости возводимого объекта.

Практика показывает, что для составления в полном объёме ТП, его согласования, утверждения и экспертиза требует около 3 лет. Такой долгий срок увеличивает стоимость и морально устаревают проектные решения. РД – рабочие чертежи и смета разрабатываются только после утверждения ТП.

Практика показывает, что свыше 80% строек делать в указанные две стадии нецелесообразно, особенно для технически несложных сооружений и при наличии уже готовых проектов. Поэтому сейчас большинство сооружений проектируется в одну стадию – разрабатывается технико-рабочий проект (ТРП). Одновременно с проектной документацией разрабатываются рабочие чертежи на первый год строительства. Если сроки рассчитаны на 2 года, то сразу на эти два года делают проект. ТП разрабатываются только для крупных и сложных сооружений и при особо трудных условий строительства. Практически таких сооружений только 20 % от числа всех строек. ТП должен состоять из тех же частей, что и ТРП, но с уточнениями:

В части ТЭО

В целесообразности строительства новой ВОЛС, сравнению с реконструкцией действующей линии связи,

Потребность в сырье, энергии, воде, материалах.

Если с строительство будет по типовым проектам, то в ТП надо указать паспорт этих типовых проектов.

ТП представляется заказчику на утверждение.

При 2-х стадийном проектировании на первой стадии разрабатывается технический проект, содержащий разделы ТЭО и свободный сметный расчёт стоимости строительства. После утверждения технического проекта разрабатывается рабочая документация, содержащая рабочие чертежи и схемы.

ТПР сооружений связи решает следующие вопросы:

Схема организации связи,

Выбор оптимального варианта трассы ВОЛС,

Размещение оконечных и промежуточных пунктов,

Выбор оборудования с учётом последних достижений науки и техники,

Конструктивные решения сооружения,

Номенклатура стройматериалов, конструкций и изделий,

Обеспечение электроэнергией, водой и прочим,

Использование территории, выбор оптимального варианта,

Обеспечение кадрами,

Обеспечение жилищно-бытовыми условиями персонала,

Организация строительства и его сроки,

Стоимость строительства,

Технико-экономические показатели (себестоимость, рентабельность, экономическая эффективность капитальных вложений).

ТПР представляется заказчику на рассмотрение и утверждение. После утверждения расчётная стоимость строительства (сделанная по ТЭО) не должна быть превышена в дальнейшем при строительстве ВОЛС.

Лекция ПВОЛС - 6.

Блок №6

Лекция ПВОЛС - 7.

Блок №7

Лекция ПВОЛС – 8.

Блок №8

Техническое задание на проектирование.

Проектирование ВОЛС производится на основании технического задания (ТЗ), которое выдаёт предприятие – заказчик проектируемой организации. Задание согласовывается с заинтересованными организациями и утверждается вышестоящими инстанциями. Задание должно быть ясным, кратким и должно содержать следующие данные:

Основание для проектирования,

Назначение объекта, условия эксплуатации, эксплуатационные нагрузки,

Условия присоединения или использование сети общего пользования,

Требования по резервированию, возможности расширения в будущем,

Сроки строительства и очерёдность ввода мощностей,

Количество стадий проектирования.

Кроме этого в задание включаются:

Наличие ВОЛС с указанием оконечных и важнейших промежуточных пунктов,

Указание о необходимости связки оконечных и промежуточных пунктов с ТВ-центрами, ретрансляционными ТВ станциями, вещательными станциями и другими сооружениями,

Виды и объёмы передаваемой информации,

Указания о системе передачи,

Требования к схеме организации связи и указания об обеспечении каналами связи пунктов, расположенных на трассе ВОЛС,

Требования о необходимости проектирования коммутационных узлов,

Требования к выделению каналов связи,

Исходные данные и мощность ВОЛС, о перспективах её развития, увязку с существующей сетью связи,

Требования по проектированию.

При составлении проектного ТЗ проводится технико-экономическое обоснование (ТЭО) или технико-экономический расчёт (ТЭР). Расчётная стоимость строительства, утвержденная и согласованная с подрядной организацией, не должна быть потом превышена при проектировании и строительстве ВОЛС.

Состав сметного расчета стоимости строительства:

Подготовка территории.

Основные объекты строительства.

Объекты подсобного и обслуживающего назначения.

Объекты энергетического хозяйства.

Объекты транспортного хозяйства и связи.

Наружные сети и сооружения водоснабжения, электро-газо-теплоснабжения, канализации.

Благоустройство и озеленение территории.

Временные здания и сооружения.

Прочие расходы и затраты.

Подготовка эксплуатационных кадров.

Проектно-изыскательские работы.

Кроме этого перечисленного в сметный расчёт могут входить средства по освоению территории строительства по сносу и переносу зданий.

Лекция ПВОЛС – 9.

Блок №9

ПРОЕКТИРОВАНИЕ ВОЛС

Лекция ПВОЛС - 1.

Общие положения по проектированию

По определению из БСЭ слово “проектирование” – это процесс создания проекта (по латыни “progectus” - брошенный вперёд). Из словаря Ожегова С.И. “проект” - это разработанный план сооружений, а “проектировать” – это чертить, производить проекцию, составлять проект. Проект – это система чертежей, изображающих будущее здание, сооружение или отдельных частей. Проект – это предварительно подготовленное, обоснованное техническими и экономическими расчётами и выраженное в чертежах решение по строительству предприятия, здания, сооружения. Проект – это комплексный технико-экономический (ТЭ) документ, определяющий архитектуру сооружения, его мощность и потребные материальные ресурсы.

Вообще слово “проектирование” означает процесс, заключающийся в преобразовании исходного описания объекта строительства в окончательное описание на основе выполнения комплекса работ исследовательского, расчётного и конструктивного характера. В нашем случае объектом строительства является волоконно-оптическая линия связи (ВОЛС), являющаяся элементом волоконно-оптической системы передачи (ВОСП). ВОСП – это совокупность аппаратуры, оптических устройств и линий связи на оптическом кабеле (ОК). На этой основе создаются, передаются и обрабатываются оптические сигналы (ОС). Задача проектирования ВОЛС состоит в обеспечении удлиненных регенерационных участков (РУ), увеличении скорости передачи информации, обеспечении качества передачи сигналов. Для этого, прежде всего надо получить некоторые сведения о конструкциях и характеристиках оптических волокон (ОВ) и ОК, о каналообразующей аппаратуре и устройствах ВОСП. Надо ознакомиться со справочными материалами по ОВ и ОК, с методикой выбора типов ОВ и ОК и расчётом их передаточных параметров для обеспечения минимальных потерь и искажений (дисперсии) сигнала. Предусмотреть организацию защиты ВОЛС от опасных и мешающих влияний

из-за действия внешних электромагнитных помех для ОК с металлическими элементами (ОКм). Надо проверить механические нагрузки на ОК и его прочность, т.к. растягивающие усилия при прокладке ОК могут привести к его деформации и увеличению затухания (росту коэффициента затухания α дб/км). На основе справочных данных надо определить объём необходимого оборудования для проектируемой ВОЛС, составить ведомость объёма работ и сделать сметно-финансовый расчёт (капитальные затраты, эксплуатационные расходы, стоимость одного канало-километра, прибыль, срок окупаемости). Рассмотреть вопросы по технике безопасности (ТБ), экологии и безопасности жизнедеятельности (ЭБЖ).

Общие требования к проектам

Проектирование является первым этапом строительства сооружений связи, а так же расширения и реконструкции уже действующих предприятий связи. Беспроектное строительство запрещено. Новое строительство не может быть начато без предварительной разработки и утверждения проектов. В 03.09.1934г. Постановлением СНК СССР был избран документ “О прекращении беспроектного и бессметного строительства”.

Задачи, стоящие перед строителями:

Повышение эффективности капитальных вложений,

Сокращение сроков строительства,

Ускорение освоения проектных мощностей,

Повышение качества и снижение стоимости строительства,

реконструкция и техническое перевооружение уже действующих предприятий на базе использования последних достижений науки и техники (инновация).

Решение этих задач зависит от проектного дела.

Лекция ПВОЛС - 2.

Блок №2

Общие требования к проектам

Основные требования это:

Должны создаваться в короткие сроки,

Высокое качество,

Обеспечить экономический эффект,

Высокий технический уровень проектных решений,

Снижение стоимости строительства,

Учёт новых и перспективных направлений техники.

Анализ показывает, что при создании сети связи основные затраты связаны с проектно-изыскательными и строительно-монтажными работами.

Исходные данные для проектирования:

Схема организации связи,

Технические характеристики на аппаратуру и кабели различных производителей, включая надёжность и стоимость,

Протяжённость участков регенерации,

Требуемая пропускная способность ВОЛС, в том числе и на перспективу,

Требуемые показатели надёжности на ВОЛС в зоне действия оператора связи.

В проекте строительства ВОЛС должно быть:

Технико-экономические требования согласно задания на проектирование,

Решение по размещению трассы и пунктов линий связи,

Решение о месте размещения линий связи на первой сети ВСС РФ, мощности линий связи (тип и ёмкость кабеля и система передачи). Учёт схемы перспективного развития первичной сети,

Решения по схеме организаций связи, применению аппаратуры и оборудования, отвечающих современным тре6бованиям в технике связи,

Вывод марки кабеля, применение современных технологий и высокий уровень механизации,

Решение по защите кабеля от коррозии, ударов молнии и от внешних источников (ЛЭП, ЭЖД).

Требования по надёжности, меры по ТБ и ЭБЖ.

На первом этапе проектирования выполняют технико-экономическое обоснование (ТЭО) различных вариантов реализации схемы организации связи (проекта); для чего может потребоваться:

Определение состава оборудования и протяжённость кабеля, задействованных в проекте,

Расчёт длины РУ,

Расчёт и проектирование показателей надёжности,

Расчёт запасов ЗИП и их распределения,

Оценка технико-экономической эффективности реализации различных вариантов проекта.

При проектировании в схеме организации связи рекомендуется с учётом особенностей и возможностей современных ВОСП ориентироваться на:

Организацию однопролётных (без промежуточных пунктов) соединительных линий на местных первичных сетях,

Организацию однопролётного участка линейного тракта между двумя соседними обслуживаемыми регенерационными пунктами (ОРП) на внутризоновых и магистральных первичных сетях, применяя для этого, при необходимости, оптические усилители (ОУ),

Гибкое использование, в зависимости от назначения, возможностей и эффективности различных способов уплотнения информации (временной, пространственной, спектральной),

Использование только ОК с одномодовым ОВ (ООВ) даже на участках сети с малой пропускной способностью,

Применение ОК с резервным ОВ,

Применение более высокоскоростной аппаратуры линейного тракта. На одну или две ступени иерархии для ЦСП (цифровых систем передачи) типа ПЦИ (плезиохронных цифровых иерархий) – PDH (Plesio Digital Hierarchy) и на один уровень синхронного транспортного модуля (СТМ) – STM (Synchronous Transported Modul) в ЦСП типа СЦИ (синхронных цифровых иерархий) – SDH (Synchronous Digital Hierarchy), по сравнению с исходными данными в части пропускной способности.

Рекомендуется с целью сохранения капитальных затрат на местности с грунтами высокой категории, проектировать прокладку ОК на опорах ЛЭП в соответствии с основами проектирования ВОЛС-ВЛ (“Основные положения по проектированию, строительству и эксплуатации ВОЛС-ВЛ”. Утверждено Госкомсвязь России, 1997).

Стадийность проектирования

Проектная документация на строительство сложных объектов разрабатывается в две стадии:

1- разработка ТЭО,

2- разработка рабочей документации.

Для несложных объектов документация разрабатывается одностадийно в виде рабочего проекта (РП). Для простейших проектов может быть только рабочая документация (РД). Проекты подлежат экспертизе и принимаются заказчиком на конкурсной основе через тендер-торг.

Литература:

1. Корнейчук В.И., Марков Т.В., Панфилов И.П., Проживальский О.П. “Проектирование волоконно-оптических систем передачи” Учебное пособие. Одесса. 1991г.

2. Алексеев Е.Б. “Основы технической эксплуатации волоконно-оптических систем передачи” Учебное пособие для ИПК. Москва. 1998г.

3. Бакланов В.Г., Воронцов А.С., Степанов Е.И. и др. “Кабельные линии связи. История развития в очерках и воспоминаниях” Москва. Радио и связь. 2002г.

Лекция ПВОЛС - 3.

Блок №3

Основные технические направления при проектировании ВОЛС.

Оптика открывает широкие возможности там, где требуются высокоскоростные коммуникации с высокой пропускной способностью. Это хорошо себя зарекомендовавшая, понятная и удобная технология. В АудиоВизуальной области она открывает новые перспективы и предоставляет решения, недоступные с помощью других методов. Оптика проникла во все ключевые направления — системы наблюдения, диспетчерские и ситуационные центры, на военные и медицинские объекты, в зоны с экстремальными условиями эксплуатации. ВОЛС обеспечивают высокую степень защиты конфиденциальной информации, позволяют передавать несжатые данные типа графики с высоким разрешением и видео с точностью до пикселя. Новые стандарты и технологии ВОЛС. Волокно — будущее СКС(структурированных кабельных систем)? Строим сеть предприятия.


Оптоволоконный (он же волоконно-оптический) кабель - это принципиально иной тип кабеля по сравнению с рассмотренными двумя типами электрического или медного кабеля. Информация по нему передается не электрическим сигналом, а световым. Главный его элемент - это прозрачное стекловолокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.


Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля (рис. 1.). Только вместо центрального медного провода здесь используется тонкое (диаметром около 1 - 10 мкм) стекловолокно, а вместо внутренней изоляции - стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. В данном случае речь идет о режиме так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется. Однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может объединять под одной оболочкой несколько оптоволоконных кабелей).

Оптоволоконный кабель обладает исключительными характеристиками по помехозащищенности и секретности передаваемой информации. Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам сигнал не порождает внешних электромагнитных излучений. Подключиться к этому типу кабеля для несанкционированного прослушивания сети практически невозможно, так как при этом нарушается целостность кабеля. Теоретически возможная полоса пропускания такого кабеля достигает величины 1012 Гц, то есть 1000 ГГц, что несравнимо выше, чем у электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается и сейчас примерно равна стоимости тонкого коаксиального кабеля.

Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, используемых в локальных сетях, составляет от 5 до 20 дБ/км, что примерно соответствует показателям электрических кабелей на низких частотах. Но в случае оптоволоконного кабеля при росте частоты передаваемого сигнала затухание увеличивается очень незначительно, и на больших частотах (особенно свыше 200 МГц) его преимущества перед электрическим кабелем неоспоримы, у него просто нет конкурентов.




Волоконно-оптические линии связи (ВОЛС) позволяют передавать аналоговые и цифровые сигналы на дальние расстояния, в некоторых случаях - на десятки километров. Они также используются на малых, более «управляемых» расстояниях, например, внутри зданий. Примеры решений по построению СКС (структурированных кабельных систем) для построения сети предприятия находятся здесь: Строим сеть предприятия: Схема построения СКС - Оптика по горизонтали. , Строим сеть предприятия: Схема построения СКС - Централизованная оптическая кабельная система. , Строим сеть предприятия: Схема построения СКС - Зоновая оптическая кабельная система.

Преимущества оптики хорошо известны: это иммунитет к шумам и помехам, малый диаметр кабелей при огромной пропускной способности, устойчивость к взлому и перехвату информации, отсутствие нужды в ретрансляторах и усилителях и т.д.
Когда-то были проблемы с оконечной заделкой оптических линий, но сегодня они в основном решены, так что работать с этой технологией стало гораздо проще. Есть, однако, ряд вопросов, которые надо рассматривать исключительно в контексте областей применения. Как и в случае с передачей по «меди» или радиоканалу, качество волоконно-оптической связи зависит от того, насколько хорошо согласованы выходной сигнал передатчика и входной каскад приемника. Некорректная спецификация мощности сигнала приводит к увеличению коэффициента битовых ошибок при передаче; мощность слишком большая — и усилитель приемника «перенасыщается», слишком малая — и возникает проблема с шумами, поскольку они начинают мешает полезному сигналу. Вот два наиболее критичных параметра ВОЛС: выходная мощность передатчика и потери при передаче — затухания в оптическом кабеле, который соединяет передатчик и приемник.

Существуют два различных типа оптоволоконного кабеля:

* многомодовый или мультимодовый кабель, более дешевый, но менее качественный;
* одномодовый кабель, более дорогой, но имеет лучшие характеристики по сравнению с первым.

Тип кабеля определят количество режимов распространения или «путей», по которым свет проходит внутри кабеля.

Многомодовый кабель , наиболее часто используемый в небольших промышленных, бытовых и коммерческих проектах, имеет самый высокий коэффициент ослабления и работает только на коротких расстояниях. Более старый тип кабеля, 62,5/125 (эти цифры характеризуют внутренний/ внешний диаметры световода в мкм), часто называемый «OM1», имеет ограниченную пропускную способность и используется для передачи данных со скоростью до 200 Мбит/с.
Недавно стали применять кабели 50/125 «OM2» и «OM3», предлагающие скорости 1Гбит/с на расстояниях до 500 м и 10 Гбит/с на до 300 м.

Одномодовый кабель используется в высокоскоростных соединениях (выше 10 Гбит/с) или на длинных дистанциях (до 30 км). Для передачи аудио и видео наиболее целесообразным является применение кабелей «OM2».
Вице-президент европейского отделения компании Extron по маркетингу Райнер Штайль отмечает, что оптоволоконные линии стали более доступными, их чаще применяют для организации сети внутри зданий — это ведет к росту применения АВ-систем на основе оптических технологий. Штайль говорит: «В плане интеграции ВОЛС уже сегодня обладают несколькими ключевыми преимуществами.
По сравнению с аналогичной медно-кабельной инфраструктурой оптика позволяет использовать одновременно и аналоговые, и цифровые видеосигналы, обеспечивая единое системное решение для работы с существующими, а также с перспективными видеоформатами.
Кроме того, т.к. оптика предлагает очень высокую пропускную способность, тот же кабель будет работать с большими разрешениями и в будущем. ВОЛС легко адаптируется к новым стандартам и форматам, появляющимся в процессе развития АВ-технологий».

Другим признанным экспертом в этой области является Джим Хейз, президент Американской Волоконно-Оптической Ассоциации, созданной в 1995 году, способствующей росту профессионализма в области волоконной оптики и, между прочим, насчитывающей в своих рядах более 27000 квалифицированных специалистов по установке и внедрению оптических систем. Он говорит о росте популярности ВОЛС следующее: «Выгода - в быстроте инсталляции и дешевизне комплектующих. Растет применение оптики в сфере телекоммуникаций, особенно в системах Fiber-To-The-Home* (FTTH) с поддержкой беспроводного доступа , а также в сфере безопасности (камеры наблюдения).
Похоже, что сегмент FTTH растет быстрее других рынков во всех развитых странах. Здесь, в США, на оптике построены сети управления дорожным движением, муниципальных служб (администрация, пожарные, полиция), учебных заведений (школы, библиотеки).
Растет количество пользователей Интернет — и у нас быстро строятся новые центры обработки данных (ЦОД), для взаимосвязи которых используется оптоволокно. Ведь при передаче сигналов со скоростью 10 Гбит/с затраты аналогичны «медным» линиям, но оптика потребляет значительно меньше энергии. Долгие годы приверженцы волокна и меди «бились» друг с другом за приоритет в корпоративных сетях. Зря потраченное время!
Сегодня связь по WiFi стала настолько хорошей, что пользователи нетбуков, ноутбуков и iPhon’ов отдали предпочтение мобильности. И теперь в корпоративных локальных сетях оптику используют для коммутации с точками беспроводного доступа».
Действительно, областей применения оптики становится все больше, в основном, из-за указанных выше преимуществ перед медью.
Оптика проникла во все ключевые направления — системы наблюдения, диспетчерские и ситуационные центры, на военные и медицинские объекты, в зоны с экстремальными условиями эксплуатации. Снижение стоимости оборудования позволило использовать оптические технологии в традиционно «медных» областях - в конференц-залах и на стадионах, в розничной торговле и на транспортных узлах.
Райнер Штайль из Extron комментирует: «Волоконно-оптическое оборудование широко используется в медицинских учреждениях, например, для коммутации локальных видеосигналов в операционных. Оптические сигналы не имеют никакого отношения к электричеству, что идеально в плане обеспечения безопасности пациентов. ВОЛС прекрасно подходят и для медицинских учебных заведений, где необходимо распределять видеосигналы из нескольких операционных в несколько аудиторий, чтобы студенты могли наблюдать за ходом операции «вживую».
Волоконно-оптическим технологиям отдают предпочтение и военные, так как передаваемые данные трудно или даже невозможно «считать» извне.
ВОЛС обеспечивают высокую степень защиты конфиденциальной информации, позволяют передавать несжатые данные типа графики с высоким разрешением и видео с точностью до пикселя.
Возможность передачи на дальние расстояния делает оптику идеально подходящей для систем Digital Signage в крупных торговых центрах, где длина кабельных линий может достигать нескольких километров. Если для витой пары расстояние ограничено 450 метрами, то для оптики и 30 км не предел».
Что касается использования оптоволокна в АудиоВизуальной индустрии, то прогрессу здесь способствуют два основных фактора. Во-первых, это интенсивное развитие IP-основанных систем передачи аудио- и видео, которые опираются на сети с высокой пропускной способностью — для них ВОЛС подходят идеально.
Во-вторых, повсеместное требование передавать видео HD и компьютерные изображения HR на расстояния большие, чем 15 метров — а это предел для передачи HDMI по меди.
Есть случаи, когда видеосигнал просто невозможно «раздать» по медному кабелю и необходимо применить оптоволокно — такие ситуации стимулируют разработку новой продукции. Бьёнг Хо Пак, вице-президент по маркетингу компании Opticis, поясняет: «Для полосы данных UXGA, 60 Гц, и 24-битового цвета требуется общая скорость 5 Гбит/с, или 1,65 Гбит/с на каждый цветовой канал. HDTV имеет несколько меньшую пропускную способность. Производители «подталкивают» рынок, но и рынок одновременно «подталкивает» игроков использовать изображения более высокого качества. Есть отдельные области применения, где требуются дисплеи, способные отображать 3-5 млн пикселей или 30- 36-битовую глубину цвета. В свою очередь, для этого потребуется скорость передачи около 10 Гбит/с».
Сегодня многие производители коммутационного оборудования предлагают версии видео-удлинителей (экстендеров) для работы с оптическими линиями. ATEN International , TRENDnet , Rextron , Gefen и другие выпускают различные модели для целого ряда видео- и компьютерных форматов.
При этом служебные данные — HDCP** и EDID*** — могут передаваться с помощью дополнительной оптический линии, а в некоторых случаях — по отдельному медному кабелю, связывающему передатчик и приемник.
В результате того, что формат HD стал стандартом для рынка вещания, на других рынках — инсталляционном, например — тоже стали применять защиту от несанкционированного копирования контента в форматах DVI и HDMI, — говорит Джим Джачетта, старший вице-президент по разработкам компании Multidyne. — С помощью выпускаемого нашей компании устройства HDMI-ONE пользователи могут отправить видеосигнал с DVD- или Blu-Ray плеера на монитор или дисплей, расположенный на расстоянии до 1000 метров. Ранее ни одно устройство, работающее с многомодовыми линиями, не поддерживало систему защиты от копирования HDCP».

Те, кто работает с ВОЛС, не должны забывать и о специфических инсталляционных проблемах - концевой заделке кабелей. В этом плане многие производители выпускают как собственно разъемы, так и монтажные наборы, включающие в себя специализированный инструмент, а также химические препараты.
Между тем, любой элемент ВОЛС, будь то удлинитель, разъем или место состыковки кабелей, должен с помощью оптического измерителя быть проверен на предмет ослабления сигнала - это необходимо для оценки общего бюджета мощности (power budget, основной расчётный показатель ВОЛС). Естественно, собрать разъемы волоконных кабелей можно и вручную, «на коленке», но действительно высокое качество и надежность гарантируется только при использовании готовых, произведенных на заводе «разделанных» кабелей, подвергнутых тщательному многоступенчатому тестированию.
Несмотря на огромную пропускную способность ВОЛС, у многих всё еще остаётся желание «впихнуть» в один кабель побольше информации.
Здесь развитие идет в двух направлениях — спектрального уплотнения (optical WDM), когда в один световод направляется несколько световых лучей с разными длинами волн, а другое - сериализация / десериализация данных (англ. SerDes), когда параллельный код преобразуется в последовательный и обратно.
При этом оборудование для спектрального уплотнения стоит дорого из-за сложного проектирования и применения миниатюрных оптических компонентов, но не увеличивает скорость передачи. Применяемые в оборудовании SerDes высокоскоростные логические устройства также увеличивают расходную часть проекта.
Кроме того, сегодня выпускается оборудование, позволяющее мультиплексировать и демультиплексировать из общего светового потока управляющие данные - USB или RS232/485. При этом световые потоки можно отправлять по одному кабелю в противоположных направлениях, хотя цена выполняющих эти «трюки» приборов обычно превышает стоимость дополнительного световода для возврата данных.

Оптика открывает широкие возможности там, где требуются высокоскоростные коммуникации с высокой пропускной способностью. Это хорошо себя зарекомендовавшая, понятная и удобная технология. В АудиоВизуальной области она открывает новые перспективы и предоставляет решения, недоступные с помощью других методов. По крайней мере, без значительных рабочих усилий и денежных затрат.

В зависимости от основной области применения волоконно-оптические кабели подразделяются на два основных вида:

Кабель внутренней прокладки:
При монтаже ВОЛС в закрытых помещениях обычно применяется Волоконно-оптический кабель с плотным буфером (для защиты от грызунов). Используется для построения СКС в качестве магистрального или горизонтального кабеля. Поддерживает передачу данных на короткие и средние расстояния. Идеально подходит для горизонтального каблирования.

Кабель внешней прокладки:

Волоконно-оптический кабель с плотным буфером, бронированный стальной лентой, влагостойкий. Применяется для внешней прокладки при создании подсистемы внешних магистралей и связывают между собой отдельные здания. Может прокладываться в кабельные каналы. Подходит для непосредственной укладки в грунт.

Внешний самонесущий оптоволоконный кабель:
Волоконно-оптический кабель самонесущий, со стальным тросиком. Применяется для внешннй прокладки на большие расстояния в рамках телефонных сетей. Поддерживает передачу сигналов кабельного телевидения, а также передачу данных. Подходит для прокладки в кабельной канализации и воздушной прокладки.

Преимущества ВОЛС:

  • Передача информации по ВОЛС имеет целый ряд достоинств перед передачей по медному кабелю. Стремительное внедрение в информационные сети Волс является следствием преимуществ, вытекающих из особенностей распространения сигнала в оптическом волокне.
  • Широкая полоса пропускания - обусловлена чрезвычайно высокой частотой несущей 1014Гц. Это дает потенциальную возможность передачи по одному оптическому волокну потока информации в несколько терабит в секунду. Большая полоса пропускания - это одно из наиболее важных преимуществ оптического волокна над медной или любой другой средой передачи информации.
  • Малое затухание светового сигнала в волокне. Выпускаемое в настоящее время отечественными и зарубежными производителями промышленное оптическое волокно имеет затухание 0,2-0,3 дБ на длине волны 1,55 мкм в расчете на один километр. Малое затухание и небольшая дисперсия позволяют строить участки линий без ретрансляции протяженностью до 100 км и более.
  • Низкий уровень шумов в волоконно-оптическом кабеле позволяет увеличить полосу пропускания, путем передачи различной модуляции сигналов с малой ибыточностью кода.
  • Высокая помехозащищенность. Поскольку волокно изготовлено из диэлектрического материала, оно невосприимчиво к электромагнитным помехам со стороны окружающих медных кабельных систем и электрического оборудования, способного индуцировать электромагнитное излучение (линии электропередачи, электродвигательные установки и т.д.). В многоволоконных кабелях также не возникает проблемы перекрестного влияния электромагнитного излучения, присущей многопарным медным кабелям.
  • Малый вес и объем. Волоконно-оптические кабели (ВОК) имеют меньший вес и объем по сравнению с медными кабелями в расчете на одну и ту же пропускную способность. Например, 900-парный телефонный кабель диаметром 7,5 см, может быть заменен одним волокном с диаметром 0,1 см. Если волокно “одеть” в множество защитных оболочек и покрыть стальной ленточной броней, диаметр такого ВОК будет 1,5 см, что в несколько раз меньше рассматриваемого телефонного кабеля.
  • Высокая защищенность от несанкционированного доступа. Поскольку ВОК практически не излучает в радиодиапазоне, то передаваемую по нему информацию трудно подслушать, не нарушая приема-передачи. Системы мониторинга (непрерывного контроля) целостности оптической линии связи, используя свойства высокой чувствительности волокна, могут мгновенно отключить “взламываемый” канал связи и подать сигнал тревоги. Сенсорные системы, использующие интерференционные эффекты распространяемых световых сигналов (как по разным волокнам, так и разной поляризации) имеют очень высокую чувствительность к колебаниям, к небольшим перепадам давления. Такие системы особенно необходимы при создании линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных.
  • Гальваническая развязка элементов сети. Данное преимущество оптического волокна заключается в его изолирующем свойстве. Волокно помогает избежать электрических “земельных” петель, которые могут возникать, когда два сетевых устройства неизолированной вычислительной сети, связанные медным кабелем, имеют заземления в разных точках здания, например на разных этажах. При этом может возникнуть большая разность потенциалов, что способно повредить сетевое оборудование. Для волокна этой проблемы просто нет.
  • Взрыво- и пожаробезопасность. Из-за отсутствия искрообразования оптическое волокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.
  • Экономичность ВОЛС. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличии от меди. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. При этом ВОК позволяет передавать сигналы на значительно большие расстояния без ретрансляции. Количество повторителей на протяженных линиях сокращается при использовании ВОК. При использовании солитонных систем передачи достигнуты дальности в 4000 км без регенерации (то есть только с использованием оптических усилителей на промежуточных узлах) при скорости передачи выше 10 Гбит/с.
  • Длительный срок эксплуатации. Со временем волокно испытывает деградацию. Это означает, что затухание в проложенном кабеле постепенно возрастает. Однако, благодаря совершенству современных технологий производства оптических волокон, этот процесс значительно замедлен, и срок службы ВОК составляет примерно 25 лет. За это время может смениться несколько поколений/стандартов приемо-передающих систем.
  • Удаленное электропитание. В некоторых случаях требуется удаленное электропитание узла информационной сети. Оптическое волокно не способно выполнять функции силового кабеля. Однако, в этих случаях можно использовать смешанный кабель, когда наряду с оптическими волокнами кабель оснащается медным проводящим элементом. Такой кабель широко используется как в России, так и за рубежом.

Однако оптоволоконный кабель имеет и некоторые недостатки:

  • Самый главный из них - высокая сложность монтажа (при установке разъемов необходима микронная точность, от точности скола стекловолокна и степени его полировки сильно зависит затухание в разъеме). Для установки разъемов применяют сварку или склеивание с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого нужна высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде заранее нарезанных кусков разной длины, на обоих концах которых уже установлены разъемы нужного типа. Следует помнить, что некачественная установка разъема резко снижает допустимую длину кабеля, определяемую затуханием.
  • Также надо помнить, что использование оптоволоконного кабеля требует специальных оптических приемников и передатчиков, преобразующих световые сигналы в электрические и обратно, что порой существенно увеличивает стоимость сети в целом.
  • Оптоволоконные кабели допускают разветвление сигналов (для этого производятся специальные пассивные разветвители (couplers) на 2—8 каналов), но, как правило, их используют для передачи данных только в одном направлении между одним передатчиком и одним приемником. Ведь любое разветвление неизбежно сильно ослабляет световой сигнал, и если разветвлений будет много, то свет может просто не дойти до конца сети. Кроме того, в разветвителе есть и внутренние потери, так что суммарная мощность сигнала на выходе меньше входной мощности.
  • Оптоволоконный кабель менее прочен и гибок, чем электрический. Типичная величина допустимого радиуса изгиба составляет около 10 - 20 см, при меньших радиусах изгиба центральное волокно может сломаться. Плохо переносит кабель и механическое растяжение, а также раздавливающие воздействия.
  • Чувствителен оптоволоконный кабель и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала. Резкие перепады температуры также негативно сказываются на нем, стекловолокно может треснуть.
  • Применяют оптоволоконный кабель только в сетях с топологией звезда и кольцо. Никаких проблем согласования и заземления в данном случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети. В будущем этот тип кабеля, вероятно, вытеснит электрические кабели или, во всяком случае, сильно потеснит их.

Перспективы развития ВОЛС:

  • В связи с ростом требований, предъявляемых новыми сетевыми приложениями, становится все более актуальным применение оптоволоконных технологий в структурированных кабельных системах. Каковы же преимущества и особенности использования оптических технологий в горизонтальной кабельной подсистеме, а также на рабочих местах пользователей?
  • Проанализировав изменения сетевых технологий за последние 5 лет, легко заметить, что медные стандарты СКС отставали от гонки "сетевых вооружений". Не успев инсталлировать СКС третьей категории, предприятиям приходилось переходить на пятую, сейчас уже и на шестую, а не за горами использование седьмой категории.
  • Очевидно, развитие сетевых технологий не остановится на достигнутом: гигабит на рабочее место вскоре станет стандартом де-факто, а впоследствии и де-юре, и для ЛВС (локальных вычислительных сетей) крупного или даже среднего предприятия 10 Гбит/с Etnernet не будет редкостью.
  • Поэтому очень важно использовать такую кабельную систему, которая позволила бы легко справляться с возрастающими скоростями сетевых приложений на протяжении как минимум 10 лет - именно такой минимальный срок службы СКС определен международными стандартами.
  • Более того, при изменении стандартов на протоколы ЛВСнеобходимо избегать повторной прокладки новых кабелей, которая раньше была причиной значительных расходов на эксплуатацию СКС и просто не допустима в будущем.
  • Только одна среда передачи в СКС удовлетворяет данным требованиям- оптика. Оптические кабели используются в телекоммуникационных сетях уже более 25 лет, в последнее время они также находят широкое применение в кабельном телевидении и ЛВС.
  • В ЛВС они в основном используются для построения магистральных кабельных каналов между зданиями и в самих зданиях, обеспечивая при этом высокую скорость передачи данных между сегментами этих сетей. Однако развитие современных сетевых технологий актуализирует использование оптоволокна как основной среды для подключения непосредственно пользователей.

Новые стандарты и технологии ВОЛС:

За последние годы на рынке появилось несколько технологий и продуктов, позволяющих значительно облегчить и удешевить использование оптоволокна в горизонтальной кабельной системе и подключение его к рабочим местам пользователей.

Среди этих новых решений прежде всего хочется выделить оптические разъемы с малым форм-фактором - SFFC (small-form-factor connectors), плоскостные лазерные диоды с вертикальным резонатором - VCSEL (vertical cavity surface-emitting lasers) и оптические многомодовые волокна нового поколения.

Следует отметить, что недавно утвержденный тип многомодового оптического волокна ОМ-3 обладает полосой пропускания более 2000 МГц/км на длине лазерного излучения 850 нм. Данный тип волокна обеспечивает последовательную передачу потоков данных протокола 10 Gigabit Ethernet на расстояние 300 м. Использование новых типов многомодового оптоволокна и 850-нанометровых VCSEL-лазеров обеспечивает наименьшую стоимость реализации 10 Gigabit Ethernet-решений.

Разработка новых стандартов оптоволоконных разъемов позволила сделать оптоволоконные системы серьезным конкурентом медным решениям. Традиционно оптоволоконные системы требовали в два раза большего числа разъемов и коммутационных шнуров, чем медные - в телекоммуникационных пунктах требовалась гораздо большая площадь для размещения оптического оборудования, как пассивного, так и активного.

Оптические разъемы с малым форм-фактором, представленные недавно целым рядом производителей, обеспечивают в два раза большую плотность портов, чем предыдущие решения, поскольку каждый такой разъем содержит в себе сразу два оптических волокна, а не одно, как ранее.

При этом уменьшаются размеры и оптических пассивных элементов - кроссов и т.д., и активного сетевого оборудования, что позволяет снизить в четыре раза расходы на установку (по сравнению с традиционными оптическими решениями).

Следует отметить, что американские органы стандартизации EIA и TIA в 1998 году приняли решение не регламентировать использование какого-либо определенного типа оптических разъемов с малым форм-фактором, что привело к появлению на рынке сразу шести типов конкурирующих решений в данной области: MT-RJ, LC, VF-45, Opti-Jack, LX.5 и SCDC. Также сегодня есть и новые разработки.

Наиболее популярным миниатюрным разъемом является разъем типа MT-RJ, который имеет один полимерный наконечник с двумя оптическими волокнами внутри. Его конструкция была спроектирована консорциумом компаний во главе с AMP Netconnect на основе разработанного в Японии многоволоконного разъема MT. AMP Netconnect на сегодня представила уже более 30 лицензий на производство данного типа разъема MT-RJ.

Своему успеху разъем MT-RJ во многом обязан внешней конструкции, которая схожа с конструкцией 8-контактного модульного медного разъема RJ-45. За последнее время характеристики разъема MT-RJ заметно улучшились - AMP Netconnect предлагает разъемы MT-RJ с ключами, предотвращающими ошибочное или несанкционированное подключение к кабельной системе. Кроме того, ряд компаний разрабатывает одномодовые варианты разъема MT-RJ.

Достаточно высоким спросом на рынке оптических кабельных решений пользуются разъемы LC компании Avaya (http://www.avaya.com). Конструкция этого разъема основана на использовании керамического наконечника с уменьшенным до 1,25 мм диаметром и пластмассового корпуса с внешней защелкой рычажного типа для фиксации в гнезде соединительной розетки.

Разъем выпускается как в симплексном, так и в дуплексном варианте. Основным преимуществом разъема LC являются низкие средние потери и их среднеквадратичное отклонение, которое составляет всего 0,1 дБ. Такое значение обеспечивает стабильную работу кабельной системы в целом. Для установки вилки LC применяются стандартная процедура вклеивания на эпоксидной смо ле и полировки. Сегодня разъемы нашли свое применение у производителей 10 Гбит/с-трансиверов.

Компания Corning Cable Systems (http://www.corning.com/cablesystems) производит одновременно как разъемы типа LC, так и MT-RJ. По ее мнению, индустрия СКС сделала свой выбор в пользу разъемов MT-RJ и LC. Недавно компания выпустила первый одномодовый разъем MT-RJ и UniCam-версии разъемов MT-RJ и LC, особенностью которых является малое время монтажа. При этом для установки разъемов типа UniCam нет необходимости использовать эпоксидный клей и поли

Введение

1.Характеристика трассы ВЛ на участке ПС Восточная - ПС Заря

2.Выбор систем передачи

2.1Существующие системы передачи по ВЛ

2.2Характеристика проектируемой СП

3.Выбор типа ОК для подвески на ВЛ

3.1Общие сведения

3.2ОК, встроенные в грозозащитный трос

3.3Самонесущие неметаллические ОК

3.4ОК, предназначенные для навивки на провода и грозозащитные тросы

5Обоснование выбора типа ОК

4.Расчет параметров ОК

4.1Расчет числовой апертуры и определения режима работы ОК

4.2Расчет затухания ОК

4.3Расчет дисперсии

4.4Расчет длины регенерационного участка

4.4.1Расчет длины ЭКУ по дисперсии

4.4.2Расчет длины ЭКУ по затуханию

5.Расчет механической нагрузки на ОКГТ

6.Эксплуатационные и монтажные измерения параметров ВОЛС

6.1Испытания и измерения ОК

6.2Измерения затухания

6.2.1Прямой метод измерения затухания

6.3Измерение дисперсии

6.4Определение места и характера повреждения ОК

7.Расчет показателей надежности

7.1Понятие надежности

7.2Расчет параметров готовности подземной ВОЛС

7.3Расчет параметров готовности подвесной ВОЛС

7.4Анализ результатов расчетов

8.Строительство ВОЛС - ВЛ на участке ПС Восточная - ПС Заря

8.1Общие сведения

8.2Строительство ВОЛС - ВЛ на монтажном участке (опора №9 - опора №17)

2.1Подготовительные работы

8.2.2Монтаж кабеля

8.3Потребность в машинах, механизмах, транспорте

9.Оценка технико-экономической эффективности ВОЛС - ВЛ

10.Мероприятия по охране труда, ТБ и сохранению окружающей среды

Заключение

Список литературы

Аннотация

Взрывной характер развития сетей связи вызвал необходимость разработки новых технологий сооружения проводных линий передачи. Основные требования к технологии - простота проектирования, быстрота, экономичность строительства, высокая пропускная способность, надёжность. В свете этих требований особый интерес представляет новая технология сооружения ВОЛС, отличающаяся тем, что оптический кабель подвешивается на опоры высоковольтных воздушных линий электропередачи, а не прокладывается в грунт.

В данном дипломном проекте рассматриваются основные вопросы проектирования и строительства ВОЛС-ВЛ на опорах существующей ВЛ 220 кВ на участке ПС Восточная-ПС Заря.

Введение

Волоконно-оптические линии связи (ВОЛС) в настоящее время занимают заметное место в системах передачи информации как общегражданского, так и специализированного назначения.

Внедрение волоконно-оптических линий в системы связи началось с конца 70-х годов и интенсивно продолжается нарастающими темпами. Исходной точкой развития ВОЛС считается открытие лазерного механизма генерации света, а затем - появление современной волоконной оптики на базе полученных кварцевых световодов с малым затуханием. Последнее показало что основное препятствие при распространении света (его затухание), обусловленное в основном наличием примесей, может быть снижено, а сами световоды приемлемы в качестве среды распространения сигнала.

Оптические волокна (ОВ) в качестве среды распространения многоканального сигнала имеют существенные преимущества перед традиционно используемыми металлическими кабелями и эфиром.

  1. Широкополосность. В любой системе связи (например, цифровой) скорость передачи информации связана с занимаемой полосой, составляющей определенный процент значения несущей частоты. Неискаженные передачу и прием полосы осуществить тем легче, чем меньший процент она составляет. Следовательно, большое значение несущей частоты, что и используется в ВОЛС,снижает требования к широкополосности системы и увеличивает ее информационную емкость.
  2. Высокая защищенность от внешних электромагнитных полей, объясняемая диэлектрической природой распространения сигнала, физическими условиями этого распространения и использованием очень коротких длин волн. Подобного эффекта невозможно достичь в уже освоенных традиционных диапазонах из-за насыщенности радиочастотного спектра источниками излучений. Это свойство особенно привлекательно для энергетики, так как металлический кабель плохо совместим с воздушными высоковольтными линиями электропередачи (ВЛ).
  3. Большая длина участка регенерации. По понятным причинам это имеет большое значение, в частности, для электроэнергетической отрасли.
  4. Малогабаритность и легкость кабелей на основе ОВ.
  5. Высокая экономичность из-за отсутствия потребности в меди, что очень существенно, поскольку традиционно кабельная промышленность потребляет до половины объема общих ресурсов меди и до четверти - свинца.

Присущие ВОЛС недостатки (дороговизна аппаратуры и кабеля из-за сложной технологии, необходимость работы при повышенном соотношении сигнал - шум из-за трудностей практической реализации когерентной обработки сигнала и гетеродинных методов приема, слабая радиационная стойкость и другие) не снижают указанных преимуществ. Это, а также тот факт, что многие задачи передачи сигналов могут быть экономично решены только с использованием ОВ, обусловило широкое распространение ВОЛС не только в дальней связи, но и в локальных сетях.

Энергетическая отрасль также является перспективной областью применения ВОЛС, учитывая протяженность ВЛ и возможность подвески оптического кабеля (ОК) на высоковольтных опорах. Телекоммуникационная сеть электроэнергетики является важнейшей составной частью ее инфраструктуры, обеспечивающей функционирование комплекса объектов и центров технологического управления Единой энергетической системы (ЕЭС) России; сбор и передачу телемеханической информации, функционирование средств и систем автоматического управления (релейной защиты, противоаварийной автоматики); контроля и диагностики электростанций, электрических и тепловых сетей, контроля и учета в реальном времени производства, передачи и потребления электрической и тепловой энергии.

Одновременно с этим телекоммуникационная сеть электроэнергетики обеспечивает работу административно-хозяйственных и организационно-экономических управлений производственными объектами, коммерческую, а также научную и конструкторскую деятельность, связанную с развитием отрасли. Телекоммуникационная сеть электроэнергетики - крупнейшая отраслевая сеть связи страны. При развитии Взаимоувязанной сети связи (ВСС) России рассматриваются вопросы по интеграции отечественных телекоммуникационных сетей в Глобальную информационную структуру (ГИС). Одновременно с глобализацией связи будет происходить постепенный переход к ее персонализации, которая означает возможность любого абонента получать различные услуги связи по своему персональному номеру в любой точке земного шара. Телекоммуникационная сеть электроэнергетики развивается как часть ВСС на аналогичных принципах с использованием передовых телекоммуникационных технологий.

Дальнейшее развитие отраслевой телекоммуникационной сети предусматривается в соответствии с разработанной специалистами Российского акционерного общества «ЕЭС России» «Концепцией развития Единой сети электросвязи и телемеханики электроэнергетики (ЕСЭТЭ) России на период до 2005 года », в которой поставлены задачи развития отраслевой телекоммуникационно - информационной инфраструктуры как технологической основой управления отраслью . При этом в полной мере учитывается существующая в России законодательная и нормативно-правовая база.

В основу создания и развития ЕСЭТЭ положен поэтапный переход от существующих раздельных сетей по видам информации к единой широкополосной цифровой сети интегрального обслуживания и интеллектуальной сети. Что позволит реализовать новые виды услуг при значительном сокращении оборудования, повышении эффективности использования канального и частотного ресурсов и в конечном итоге при значительном снижении затрат в расчете на единицу передаваемой информации.

Из новейших информационных технологий, которые начали в последнее время внедряться в электроэнергетике и получают широкое распространение в дальнейшем, следует отметить :

синхронную цифровую иерархию (СЦИ) - Synchronous Digital Hierarchy - SDH;

широкополосную цифровую сеть связи с интегрированным обслуживанием (Ш-ЦСИО) - Broadbard Integrated Services Digital Network (B-ISDN);

асинхронный режим доставки информации (АРА) - Asynchronous Transfer Mode - ATM;

интеллектуальные сети (СИ) - Intelligent Network - IN.

Цифровизация первичной сети осуществляется в три этапа :

На первом этапе (до 2000 года) будут созданы интегрально-цифровые сети связи (ИЦСС) - Integrated Digital Network - IND, в которых будет обеспечиваться интеграция цифровых систем передачи и коммутации. Одним из главных решений этого этапа является переход сетей связи отрасли на единую систему сигнализации. При этом с целью повышения эффективности цифровизации необходимо в каждой из зон обеспечивать компклексное внедрение цифровых систем передачи и коммутации;

на втором этапе (до 2005 года) должны быть созданы цифровые сети интегрального обслуживания (ЦСИО) - Integrated Services Digital Network (ISDN), в которых потребители используют каналы 2В+D (B - цифровой 64-кбит/c канал, D - служебный цифровой 16- Кбит/c канал). Эти сети - результат взаимного развития сетей связи и вычислительных сетей, обеспечивающих предоставление пользователям более широкого спектра услуг;

на третьем этапе (после 2005 года) предусматривается переход к Ш-ЦСИО для организации отраслевой транспортной сети и интеллектуальных сетей.

Внедрение указанных выше новейших информационных технологий осуществляется в рамках интенсивного развития в отрасли:

волоконно- оптических линий связи с подвеской волоконно-оптических кабелей (ВОК) на опорах ВЛ 110-500 кВ;

цифровой коммутационной техники;

систем спутниковой связи.

Внедрение ВОЛС с подвеской ВОК на опорах ВЛ в нашей стране было начато в конце 80-х годов, и на 1 июля 1998 г. введены в эксплуатацию ВОЛС общей протяженностью около 4000 км в ряде энергосистем (Ленэнерго, Колэнерго, Иркутскэнерго, Ивэнерго, Кузбассэнерго и других) . Дальнейшее развитие сетей ВОЛС определено Концепцией развития Единой сети электросвязи и телемеханики электроэнергетики России на период до 2005 года , в соответствии с которой в ближайшие 7-8 лет будет построено около 15,0 тыс.км. ВОЛС с подвеской на ВЛ. Магистральные ВОЛС будут сооружаться, как правило, в кооперации с АО Ростелеком и с некоторыми другими, в первую очередь отечественными телекоммуникацинными компаниями. В регионах, главным образом, будут сооружаться корпоративные сети. При этом основное внимание будет уделяться развитию региональных первичных цифровых сетей.

Учитывая накопленный опыт, а также возрастающую заинтересованность операторов связи и различных компаний и ведомств в строительстве ВОЛС на ВЛ (ВОЛС-ВЛ) РАО ЕЭС России по поручению Государственной комиссии по электросвязи при Государственном комитете России по связи и информатизации разработало нормативно-техническую документацию федерального уровня Правила проектирования, строительства и эксплуатации волоконно-оптических линий связи на ВЛ 110 кВ и выше[2].

В общих положениях Правил обосновываются достоинства сооружения ВОЛС-ВЛ по сравнению с традиционным способом прокладки в грунте. Это:

отсутствие необходимости в отводе земель и проведение согласований только с владельцами сооружений, пересекаемых ВЛ;

уменьшение сроков строительства;

уменьшение количества повреждений в районах городской застройки и в промышленных зонах;

снижение капитальных и эксплуатационных затрат в районах с тяжелыми грунтами.

В данном дипломном проекте рассмотрены основные вопросы проектирования и строительства ВОЛС-ВЛ на опорах существующей ВЛ 220 кВ. на участке ПС Восточная-ПС Заря.

1 Характеристика трассы ВЛ на участке ПС Восточная - ПС Заря

На проектируемом участке ПС Восточная - ПС Заря, построена и находится в эксплуатации воздушная высоковольтная линия электропередачи с заземленной нейтралью и действующим напряжением 220кВ. ВЛ проходит в Новосибирской области, по землям совхозов «Луговского» и «Железнодорожного» Новосибирского сельского района.

В районе ПС Заря трасса проходит по Шмаковской лесной даче, Тогучинского лесхоза.

По пути следования ВЛ имеет 2 пересечения с электрофицированными магистральными железными дорогами (Инская - Тогучин и Инская - Сокур), 1 пересечение с ВЛ 110кВ, 1 пересечение с несудоходной рекой Иня и другие пересечения.

Климат района континентальный.

Расчетные климатические условия следующие:

  • Район гололедности 2;
  • Толщина стенок гололеда - 10мм;
  • Скорость ветра при гололеде - 15м/сек, температура воздуха - минус 5 градусов С0;
  • Расчетная скорость ветра - 29м/сек;
  • Абсолютная минимальная температура воздуха минус 50 градусов С0;
  • Абсолютная максимальная температура воздуха плюс 40 градусов С0;
  • Температура наиболее холодной пятидневки минус 39 градусов С0;
  • Среднегодовая продолжительность гроз - 48 часов.

Протяженность волоконно - оптической линии связи составляет 32,849км.

Район строительства согласно строительных норм и правил (СН и П) «Нормы затрат на временные здания и сооружения» определяется как освоенный.

На рисунке 1.1 приведена схема трассы ВЛ на участке ПС Восточная - ПС Заря.

2.Выбор системы передачи

.1 Существующие системы передачи по ВЛ

волоконная оптическая линия связь

Переход к цифровым сетям связи с применением волоконно-оптических кабелей начался в электроэнергетике в конце 80-х годов. До этого времени для организации связи использовались и продолжают использоваться аналоговые системы передачи. По назначению аппаратуру аналоговых систем передачи информации, применяемую на ВЛ, можно разделить на две основные группы: комбинированную и многоканальную- для каналов телефонной связи, телемеханики и передачи данных; специальную- для каналов релейной защиты, линейной и противоаварийной автоматики.

Комбинированная аппаратура рассчитана на один, два и три телефонных канала и несколько независимых каналов телемеханики (передачи данных) в верхней части полосы стандартного канала тональных частот (ТЧ) . Спектр частот стандартного канала ТЧ 0,3-3,4 кГц. разделяется фильтрами на несколько отдельных каналов. Передача сигналов телефонного разговора осуществляется в нижней так называемой тональной части спектра, составляющей обычно 0,3-2,3 кГц., а в надтональном спектре частот (2,3-3,4кГц.) образуются каналы телемеханики, передачи данных и вызова абонентов телефонного канала (если в аппаратуре выделен специальный сигнал для этого). Для каждого из каналов в комбинированной аппаратуре используется своя несущая частота, которая модулируется первичными сигналам.

Многоканальная аппаратура рассчитана на двенадцать стандартных телефонных каналов. При этом спектр частот каждого телефонного канала 0,3-3,4 кГц. может быть использован для передачи сигналов телемеханики, данных и устройств автоматики.

В комбинированной и многоканальной аппаратуре используется способ передачи сигналов на одной боковой полосе частот (ОБП). Каналы телемеханики и данных образуются с помощью дополнительной аппаратуры (модемов) с частотной модуляцией поднесущей частоты.

Существует следующая аппаратура систем передачи информации по ВЛ : комбинированная типа АСК на один и три канала ТЧ; преобразователи спектра частот стандартной двенадцатиканальной аппаратуры воздушных проводных линий связи (В-12-3, З-12Ф-Е) в спектр высоких частот типа МПУ-12; усилители мощности на 100 Вт. типа УМ-1/12-100 для комбинированной и многоканальной аппаратуры; модемы каналов телемеханики типов АПТ и ТАТ-65.

С 1981 года выпускается, с использованием новой элементной базы комбинированная аппаратура на один, два и три телефонных канала типа ВЧС; преобразователи спектра частот 12-ти канальной аппаратуры типа ВЧСП-12; транзисторные усилители мощности на 80 Вт.; универсальные модемы типа АПСТ .

Специальная аппаратура для высокочастотных (ВЧ) каналов релейной защиты, линейной и противоаварийной автоматики делится на две подгруппы: устройства передачи блокирующих (запрещающих) сигналов; устройства передачи разрешающих и отключающих сигналов.

Передача блокирующих сигналов осуществляется для дифференциально-фазных и дистанционных защит.

Передача разрешающих сигналов (контролируемых на приёмном конце) осуществляется для ускорения действия резервных защит, а отключающих (неконтролируемых) сигналов - для защит оборудования высокого напряжения, включенного непосредственно на шины подстанций (без выключателей), а также для систем противоаварийной автоматики.

Существует специальная аппаратура следующих типов : приемопередатчик УПЗ -70 для передачи блокирующих сигналов; передатчики и приемники ВЧТО-М для передачи пяти сигналов-команд; высокочастотные и низкочастотные передатчики и приемники АВПА и АНКА для передачи до 14 сигналов-команд.

С 1981 года выпускается более совершенный, с использованием новых элементов приёмопередатчик типа АВЗК-80 для всех видов защит с блокирующим сигналом .

Все перечисленные выше системы передачи работают по фазным проводам ВЛ. Такие используются ВЧ тракты по: изолированным проводящим грозозащитным тросам; изолированным проводам расщеплённых фаз (внутрифазный тракт); изолированным проводам расщеплённых проводящих грозозащитных тросов (внутритросовый тракт).

К недостаткам аналоговых систем передачи можно отнести высокий уровень помех в ВЧ каналах и влияние ВЧ систем по ВЛ на радиоприём и системы навигационного управления. Они не отвечают всё возрастающим требованиям отраслевой сети электросвязи энергетики и поэтому требуют замены на более совершенные цифровые системы передачи с использованием волоконно-оптических кабелей.

2.2 Характеристика проектируемой системы передачи

Для организации диспетчерско-технологической связи между ПС Заря (Новосибирскэнерго) и Восточными электрическими сетями проектом предусматривается применение 120-канальной цифровой системы передачи. Система изготовлена экспериментальным заводом научного приборостроения российской академии наук (ЭЗНП РАН) совместно с японской фирмой NEC (торговая марка NEC-EZAN).

Для организации линий передачи по волоконно-оптическому кабелю используются оптические линейные терминалы (OLT). OLT осуществляет работу по двум оптическим волокнам, одно для передачи, другое для приёма.

OLT серии FD2250, используемый в данной системе, преобразует входной кодированный сигнал со скоростью передачи 8448 кбит/с в оптический кодированный сигнал со скоростью передачи 8448 кбит/с. OLT FD2250 работаем по одномодовым оптическим волокнам с длиной волны 1,31 мкм.

В качестве аппаратуры аналого-цифрового каналообразования применяется мультиплексор серии ENE 6012,который обеспечивает:

  • приём тридцати каналов ТЧ или основных цифровых каналов (ОЦК) и соответствующего числа каналов передачи сигналов управления и взаимодействия между АТС;
  • объединение-разделение их в групповой первичный цифровой поток со скоростью передачи 2048 кбит/с.

Вторичное временное группообразование осуществляется мультиплексором серии ENE 6020. Он предназначен для объединения-разделения четырех плезиохронных первичных потоков со скоростью передачи 2048 кБит/с. в групповой вторичный поток со скоростью передачи 8448 кБит/с.

Для коммутации станционных оптических, коаксиальных и симметричных кабелей используется кроссовое оборудование, в состав которого входит кроссовая стойка EN-8778, с установленными на ней оптическими, коаксиальными и симметричными кроссами.

Для питания и размещения съемных комплектов аппаратуры каналообразования (ENE-6012), комплектов временного группообразования (ENE-6020), оптического терминала (FD-2250) и другого оборудования, а также для отображения состояния, включенного в неё оборудования, предназначена стойка серии EN 6000.

Основные технические данные оптического терминала FD-2250 приведены в таблице 2.1 .

Таблица 2.1 - Основные технические данные оптического терминала FD 2250.

Оптический интерфейсFD 2250Электрический интерфейс: КодHDB-3Амплитуда импульса 2,37 В.Выходное сопротивление75 Ом.Потери в соединительных Кабелях6 дБ на частоте 4224 кГцОптический интерфейс:Скорость передачи 8448 кбит/скод в линииCMIКоэффициент достоверности10-11тип кабеляОдномодовыйДлина волны1.31 мкмИсточник оптической энергиилазерный диод FD-DC-PBHПриемник оптической энергииЛавинный фотодиод типа GE-APDтип оптического соединителяD4-PCДопустимые потери33.5 дБ (19.5 дБ при излучателе низкой энергии)Энергетический потенциал40 дБ

В оборудовании OLT предусмотрена передача каналов сервисных данных (SD), используемых для передачи сигналов служебной связи, сигналов управления и контроля, а также служебных каналов, которые потребитель может использовать для своих целей.

В таблице 2.2 приведён интерфейс каналов SD .

Таблица 2.2 - Интерфейс каналов SD

Оптический терминал FD 2250Количество сервисных каналов4Скорость передачи64 кбит/с.Входной \ выходной сигнал Данных-DATANRZВходной \ выходной сигнал тактовой частоты-CLKСкважность 2Входное сопротивление120 ОмУровни входных и выходных сигналовМСЭ рекомендация V.11.

Мультиплексор ENE-6012 выполнен в виде отдельного блока, который размещается на стойке EN 6000. На стойке могут быть установлены до 4-х комплектов мультиплексоров.

Основные технические данные мультиплексора ENE-6012 приведены в таблице 2.3 .

Таблица 2.3 - Основные технические данные мультиплексора серии ENE 6012.

МультиплексорENE 601212Системные показатели: Число каналов30 ТЧ или ОЦКЧисло проводов входящих и исходящих цепейДо 6Частота дискретизации8 кГцЧастота синхронизации2048 кГцПараметры первичного цифрового Стыка (в соответствии с ГОСТ 26886--86 и рекомендацией G.703 МСЭ: Скорость передачи2048 кбит/сКодHDB 3 (МЧПИ)Входное-выходное сопротивление120 ОмТип кабелясимметричныйНоминальная амплитуда импульса3,0 В (120 Ом)Допустимое затухание Соединительного кабеля6 дБ на частоте 1024 кГцПараметры цифрового стыка Сигнала внешней Синхронизации: Частота тактовых сигналов2048*(1±50*10-6) кГцТип кабеляСимметричныйВолновое сопротивление120 ОмМаксимальное пиковое Напряжение1,9 ВМинимальное пиковое Напряжение1,0 ВДопустимое затухание Соединительной линии на частоте 1024 кГцОт 0до 6 дБПараметры канала ТЧ: Частота0,3-3,4 кГцВходное-выходное сопротивление600 ОмУровень передачи:2-х проводное окончание0/ минус 2,0 дБ4-х проводное окончание3,5/минус 13,0 дБУровень приема:2-х проводное окончаниеминус 2,0/минус 3,5 дБ4-х проводное окончаниеминус 3,5/4,0 дБПереходные влияния, не болееминус 65 дБШум в свободном канале, не болееминус 65 дБПараметры канала ОЦК (согласно ГОСТ 26886-86 и рекомендации G.703 МСЭ: Скорость передачи64 кбит/сВид стыкаСонаправленный и противонаправленныйВходное сопротивление120 ОмАмплитуда импульса1 ВМаксимальное затухание стыковой Цепи на частоте 128 кГцот 0 до 3 дБ

Основные технические данные мультиплексора серии ENE-6020 приведены в таблице 2.4 .

Таблица 2.4-Основные технические данные мультиплексора серии ENE 6020.

МультиплексорENE 6020Интерфейс согласно МСЭ рекомендация G.703Скорость передачи на входе2048 кбит/сКоличество входных потоков4Скорость передачи на выходе8448 кбит/сКоличество каналов в мультиплексированном потоке120Код входного сигналаHDB 3Код выходного сигналаHDB 3Метод мультиплексированияВременное посимвольное группированиеМетод выравнивания скоростейПоложительное выравниваниеВходное сопротивление75 Ом или 120 ОмВыходное сопротивление75 ОмАмплитуда импульса выходного Сигнала2,37 ВЧастота синхронизации2048 кГцДопустимые потери в Соединительном кабеле6 дБ на частоте 1024 кГц

Электропитание аппаратуры ENE-6012, ENE-6020 и стойки EN 6000, размещаемой в обслуживаемых пунктах, осуществляется в соответствии с ГОСТ 5237 от источника постоянного тока с напряжением минус (21-29) В. (номинальное значение минус 24 В.) или минус (36-72) В. (номинальное значение минус 48 В. и минус 60 В.) с заземлённым положительным полюсом источника питания .

Аппаратура, устанавливаемая в помещении линейно-аппаратного цеха (ЛАЦ), предназначена для круглосуточной эксплуатации при температуре воздуха от 0 до +45°С и относительной влажности до 90% при температуре +35°С и снижении атмосферного давления до 450 мм. рт. ст.

Аппаратура должна сохранять свои нормированные параметры и характеристики после воздействия следующих климатических факторов:

  • предельной температуре +50°С;
  • относительной влажности воздуха 95% при температуре +35°С;
  • предельной температуре минус 50°С;
  • атмосферном давлении 60 кПа (450 мм. рт. ст.).

Структурная схема организации связи представлена на рисунке 2.1.

3. Выбор типа оптического кабеля для подвески на ВЛ

.1 Общие сведения

Широкое внедрение оптических кабелей на сетях связи привело к их использованию на ВЛ для передачи информационных сигналов по обслуживанию ВЛ, так и для использования части каналов для коммерческой цели.

Это большая группа ОК, имеющая специфические особенности, такие как стойкость к температурным перепадам и ветровым нагрузкам, воздействию дождя и пара, снега и льда, солнечного света и радиации, грозовых воздействий, больших механических нагрузок, воздействию экологии среды.

Эти кабели должны обладать высокой надежностью работы, такой же, как и ВЛ.

Вследствие этого к ним предъявляются дополнительные требования:

  1. они не должны повреждаться при аварийных режимах на ВЛ и при многочисленных коммутациях в энергосистемах;
  2. они должны быть защищены от внешних воздействий;
  3. они должны обладать высокими механическими характеристиками;
  4. срок службы должен быть увеличен до 40 лет;
  5. они должны работать при высоком каронирующем эффекте фазовых проводов.

При строительстве волоконно-оптических линий связи с подвеской на опорах ВЛ в мировой практике получили распространение следующие типы волоконно-оптических кабелей :

OPGW (Optical Graud Wire) - ВОК, встроенный в грозозащитный трос (ОКГТ ) - используется при создании магистральных и внутризоновых ВОЛС на ВЛ 110 - 500 кВ, как правило, при реконструкции или сооружении новых линий электропередачи;

ADSS (All Dielectric Sely - Sypporting) - самонесущие неметаллические ВОК (ОКСН ) -для организации внутрисистемных ВОЛС по линиям электропередачи 35-220 кВ, на существующих опорах ВЛ или при отсутствии на них грозозащитных тросов;

WADC (Wrapped All Dielectric Cables) - навиваемые на фазовые провода или грозозащитные тросы (ОККН ) - используются во внутрисистемных ВОЛС по линиям электропередачи 35-220 кВ;

PA (Preporm Aftched) - неметаллические ВОК, прикрепляемые к грозозащитным тросам - применяются для организации внутрисистемных ВОЛС на ВЛ 110-220 кВ.

Строительство воздушных волоконно- оптических линий в российской энергетике ведётся в основном с использованием ВОК встроенного в грозозащитный трос (ОКГТ) и самонесущего кабеля (ОКСН). В России также налажено производство ВОК навивного типа. Проведены испытания таких кабелей и разработаны принципы проектирования линий с его использованием для ВЛ, получен российский патент на машину для навивки волоконно-оптического кабеля.

Ниже рассмотрим более подробно классификацию ВОК для подвески на ВЛ.

.2 Оптические кабели, встроенные в грозозащитный трос

Оптимальным решением для создания надёжной оптической связи по ВЛ является передача оптического сигнала по кабелям, встроенным в грозозащитный трос. При выборе конструкции таких кабелей следует учитывать то обстоятельство, что кабель должен выполнять две функции: с одной стороны, обеспечивать стабильность оптических параметров в течении длительного времени эксплуатации (не менее 25 лет); и с другой стороны, обеспечивать надёжную защиту линии от ударов грозовых разрядов, выдерживать значительные токи короткого замыкания, возникающие на линии в течении срока службы кабеля.

В связи с этим проектировщикам оптических кабелей, встроенных в грозозащитный трос, приходится решать задачи обеспечения заданных оптических параметров в условиях повышенных температур, возникающих в кабеле при его нагреве от токов короткого замыкания, при ударах грозовых разрядов, и в условиях пониженных температур, которые определяются климатическим районом подвески кабеля. Кроме того, необходимо обеспечить высокую механическую прочность кабеля и низкое сопротивление.

В настоящее время многие зарубежные фирмы, а также ряд российских компаний, освоили выпуск таких кабелей и предлагают различные конструктивные и технологические решения для обеспечения указанных параметров. По конструкции оптические кабели, встроенные в грозозащитный трос, можно разделить на три основные группы.

Первая группа кабелей. Оптический сердечник заключен в трубку из алюминия или алюминиевого сплава, которая бывает герметичной и негерметичной, обеспечивает механическую защиту оптического сердечника, имеет низкое электрическое сопротивление. Поверх трубки положены повивы из проволок, определяющие механическую прочность кабеля и его электрические параметры.

На рисунке 3.1 показаны типичные конструкции кабелей первой группы, выпускаемых следующими фирмами:Alcoa Fujikura LTD (США), BICC (Великобритания), Cables Pirelli S.A. (Испания), Alcatel (Франция), Showas Wires&Cables (Япония), Fujikura (Япония), АО ВНИИКП совместно с АОЗТ (Россия) .

Второй тип кабелей. Оптические волокна свободно уложены в герметичной трубке из нержавеющей стали, свободное пространство трубки заполнено гидрофобным заполнителем. Одна или несколько таких трубок с оптическими волокнами скручены вокруг центральной проволоки, образуя первый повив кабеля. В зависимости от прочности и необходимого сопротивления кабеля дополнительно накладываются еще один или два повива проволок.

Кабели такого типа выпускаются фирмами: AEG (Германия), Felten&Guilleaume Energietechnik (Германия), Philips (Германия). Типичный образец кабеля такого типа показан на рисунке 3.2 .

Третья группа кабелей. Оптические волокна свободно уложены в полимерной трубке, свободное пространство которой заполнено гидрофобом. Поверх полимерной трубки наложены повивы из проволок, обеспечивающие необходимую механическую прочность и электрическое сопротивление кабеля.

Конструкцию такого вида кабелей предлагают фирмы Nokia (Финляндия) и Siemens (Германия). На рисунке 3.3 представлены конструкции этих кабелей .

К третьей группе можно отнести ОКГТ, выпускаемый АОЗТ Ссамарская оптическая кабельная компания (рис. 3.4). Его конструктивная особенность заключается в том, что между внешним и внутренним повивами проволок расположена оболочка из алюминия.

Таким образом, основным принципиальным отличием оптических сердечников, выпускаемых различными фирмами для оптических кабелей, встроенных в грозозащитный трос, является укладка волокна в оптическом сердечнике. Применяется как свободная укладка волокон в оптическом модуле (loose tube), так и плотная упаковка волокон (tight unit или tight buffer).

При расчете оптического кабеля, встроенного в грозозащитный трос, на предельно допустимую растягивающую нагрузку следует учитывать предельно допустимую нагрузку на волокно для сохранения как оптического затухания, так и его целостности в течении всего срока службы кабеля. Так, для кабелей со свободной укладкой волокон в оптическом сердечнике обычно волокно не нагружено при максимально допустимой растягивающей нагрузке, приложенной к кабелю. Нагрузка на волокно (или удлинение волокна) появляется при приложении к кабелю нагрузок, превышающих максимально допустимые, как показано на рисунке 3.5 .

При использовании оптических сердечников с плотной упаковкой волокон приложенная растягивающая нагрузка на кабель передаётся на оптическое волокно, то есть оптическое волокно в этом случае находится в напряженном состоянии (рис. 3.5). Известно, что под действием нагрузки и влаги механическая прочность оптических волокон изменяется и вследствии этого уменьшается их время жизнеспособности. Таким образом, для обеспечения необходимого срока службы кабеля требуются защита оптических волокон от действия влаги и сохранение высокой механической прочности волокон в течении всего срока службы кабеля. Так, фирма Alcoa Fujikura, применяющая конструкцию кабеля с плотной упаковкой волокон в оптическом сердечнике, использует оптическое волокно фирмы Corning Incorporated Opto-Electronics Group, которое имеет дополнительное покрытие по кварцевой оболочке окисью титана. АОЗТ Самарская оптическая кабельная компания в своей кабельной продукции использует оптические волокна этой же фирмы и имеет возможность изготовления ОКГТ с одномодовыми оптическими волокнами повышенной стойкости к старению SMF-33Titan.

Такое волокно имеет параметр усталости n =29.5 (для обычного волокна n=22.5), отражающий время жизнеспособности волокна. Предварительная отбраковка волокна при 1%-ном удлинении позволит гарантировать срок его службы в течении 40 лет. Максимально допустимые нагрузки на кабель выбираются из расчёта удлинения волокна до 0,5-0,6%.

При плотной упаковке волокна в оптическом сердечнике его размеры могут быть значительно снижены по сравнению с размером сердечника со свободной укладкой волокна, что имеет значение для оптических кабелей с большим числом волокон, так как при этом диаметр кабелей может быть уменьшен.

Компактную конструкцию имеют кабели, в которых оптическое волокно уложено в трубку из нержавеющей стали, что позволяет оптимизировать габаритные размеры кабеля (массу, диаметр) при сохранении его высокой механической прочности и необходимого электрического сопротивления. Однако в этом случае не исключена возможность электрохимической коррозии. Поэтому скрутка трубок с волокном и стальных проволок, покрытых алюминием, обычно имеет смазку для уменьшения коррозии, например у кабелей фирмы, Felten&Guilleaume.Фирма Philips предложила обмотку трубки алюминиевой лентой, внутренняя сторона которой покрыта полимерной пленкой.

В конструкции кабелей без защиты оптических сердечников от воздействия влаги требуется применение полимерных материалов, сохраняющих свои физико-механические свойства под действием растягивающих нагрузок и атмосферы в течении длительного времени эксплуатации.

Для обеспечения электрических параметров конструкция кабеля рассчитывается на определенное сопротивление постоянному току, которое достигается необходимым сечением алюминия и его сплавов. Применение трубок из алюминия и проволок алюминиевого сплава в повиве со стальными оцинкованными проволоками ограничивает срок службы кабеля из-за вероятности электрохимической коррозии. Для обеспечения длительного срока эксплуатации необходимо применение специальных антикоррозийных смазок или антикоррозийных покрытий стальных проволок. Покрытие стальной проволоки цинкоалюминиевым сплавом позволяет значительно увеличить её срок службы. Наилучшим решением является покрытие стальных проволок алюминием. В этом случае обеспечивается высокая защита стальной проволоки и проволок из алюминия или алюминиевого сплава от коррозии и увеличивается электрическое сопротивление кабеля. Для обеспечения высокой механической прочности кабеля и модуля упругости в проволоке, покрытой алюминием, необходимо использование стали с прочностью не менее 160 кгс/мм2 ; обычно прочность стальной проволоки, покрытой алюминием, составляет не менее 140 кгс/мм2 , в отдельных случаях она может быть выше.

Из всего сказанного следует, что при выборе конструкции оптического кабеля, встроенного в грозозащитный трос, необходимо учитывать оптимизацию всех его параметров: максимально допустимую растягивающую нагрузку, сопротивление постоянному току, массу, диаметр, число волокон, а также показатели надежности его элементов.

.3 Самонесущие неметаллические оптические кабели

Создание оптической связи по высоковольтным линиям электропередачи без замены грозозащитных тросов на оптические кабели, встроенные в грозозащитный трос, возможно с помощью подвески специально разработанных для этой цели подвесных неметаллических оптических кабелей связи. К настоящему времени многие российские, и зарубежные фирмы предлагают различные по конструктивному решению кабели такого класса. Основные типовые конструкции этих кабелей можно разделить на три группы.

Первая группа кабелей-подвесные неметаллические оптические кабели связи, силовыми элементами которых являются стеклопластиковые стержни. Кабели этой группы в основном выпускаются российскими предприятиями. Обусловлено это тем, что цена 1 км стеклопластикового стержня в России в 2-3 раза дешевле, чем за рубежом. Основными поставщиками таких кабелей являются АО ВНИИКП (Москва) и ОПТЕН (Санкт-Петербург). Этими предприятиями разработана номенклатура кабелей, рассчитанных на различные механические нагрузки; на рисунке 3.6 показаны типовые конструкции кабелей данной группы. В обоих случаях волокно свободно уложено в оптическом модуле, свободное пространство которых заполнено гидрофобным заполнителем (loose tube). Основное отличие заключается в технологическом исполнении оптического сердечника. В кабелях АО ВНИИКП оптические модули скручены вместе со стеклопластиковыми элементами вокруг центрального стеклопластика, для обеспечения необходимой растягивающей нагрузки поверх оптического сердечника накладываются повивы из стеклопластиков. В кабелях АО ОПТЕН оптический сердечник выполнен в виде скрутки оптических модулей между собой, поверх оптического сердечника положен повив из стеклопластиковых стержней.

Вторая группа кабелей-подвесные неметаллические оптические кабели, силовыми элементами которых являются арамидные нити. Кабели данной группы выпускаются как многими зарубежными фирмами, такими как Alcoa Fujikura (США), Siemens (Германия), АТ&T (США), Pirelli (Италия), так и российскими предприятиями АО ВНИИКП и АО ОПТЕН. Типовая конструкция таких кабелей представлена на рисунке 3.7, а . Все перечисленные фирмы используют оптические модули со свободной укладкой волокна (loose tube).

Третья группа кабелей - подвесные неметаллические оптические кабели, силовыми элементами которых являются арамидные нити и стеклопластик, который в свою очередь, может быть стержнем, а может быть выполнен в виде центрального профилированного элемента. Такой вариант кабеля изображен на рисунке 3.7, б . Оптический кабель с силовыми элементами из арамидных нитей стеклопластиковых стержней предлагается АО ВНИИКП и показан на рисунке 3.7, в .

Расчет подвесных оптических кабелей на максимально допустимую растягивающую нагрузку проводят на основе допустимой нагрузки на волокно (максимально допустимого удлинения волокна), которая выбирается каждым разработчиком кабеля, исходя из избыточной длины волокна в оптическом модуле и в некоторых случаях при использовании специально подобранных волокон дополнительно допустимой нагрузки на волокно. Так, фирма АТ&Т предлагает конструкцию кабеля, в котором волокно не удлиняется при удлинении кабеля до 1%. АО ВНИИКП допускает растягивающую нагрузку на кабель при его удлинении до 0,5% без удлинения волокна. При этом число арамидных нитей или сечение стеклопластиковых элементов выбирается из расчета допустимой нагрузки при заданном удлинении кабеля.

Недостатками оптических кабелей 1-ой группы по сравнению с кабелями 2-ой группы являются их больший наружный диаметр из-за низкой степени заполнения стеклопластиковых элементов, меньшая гибкость, большая масса.

Защита оптического сердечника кабеля и армирующих элементов от влаги обеспечивается полимерными оболочками кабеля. Поэтому особенно актуальной является задача сохранения целостности наружной полиэтиленовой оболочки в течении всего срока службы кабеля. Известно, что под воздействием электрического поля и влаги происходит деградация полиэтиленовой оболочки кабеля , поэтому при условии выбора точки подвеса с минимальной напряженностью электрического поля подвесные неметаллические оптические кабели с оболочкой из обычного шлангового полиэтилена (в российском варианте ПЭ 153-10К) рекомендованы для подвески на линиях электропередачи напряжением до 110 кВ (для зарубежных линий 132кВ).

Таким образом, подвесные неметаллические оптические кабели имеют ограниченную область применения. В последнее время проведены работы по созданию материала для оболочки таких кабелей на основе полиэтилена, который имеет повышенную трекингостойкость (трекинг-образование на поверхности диэлектрика следов пробоя при воздействии электрического поля). Так фирмы Alcoa Fujikura и Siemens предлагают оптический кабель для подвески на линиях электропередачи напряжением 230 кВ при выборе точки подвеса с напряженностью не более 12 кВ. Фирма АТ&Т предлагает оптические кабели для подвески на линиях электропередачи напряжением 230 и 500 кВ с ограничением точек подвеса по напряжению не более 12 и 25 кВ соответственно. Следовательно, в настоящее время область применения подвесных неметаллических кабелей расширяется. Но при этом требуется проведение тщательных расчетов возможных воздействий на оболочку кабеля, а, возможно, и его дополнительных испытаний. Работы, проведённые в АО ВНИИКП по влиянию электрического поля на полиэтиленовую оболочку кабеля, показали, что наблюдается изменение надмолекулярной структуры полиэтилена при 1,75 кВ/cм. Вероятной причиной этих изменений может быть разогрев образца в ходе электрических испытаний до температуры примерно 60°С, вследствии чего вероятно ускоренное старение полиэтилена.

3.4 Оптические кабели, предназначенные для навивки на провода и грозозащитные тросы

Одним из наиболее дешевых видов передачи информации по ВЛ является передача сигнала по оптическому кабелю связи, навитому на фазовый провод или грозозащитный трос линии. Технологией навивки оптических кабелей на провода или тросы до настоящего времени занимались всего две фирмы в мире Furukawa Elektric CO LTD (Япония) и Focas Limited (США). И это объяснимо, так как фирмы владели устройством для навивки оптического кабеля на провода линий электропередачи. Этими фирмами предложены оптические кабели для навивки, как на грозозащитный трос, так и на фазовые провода.

Российская фирма ОРГРЭС разработала и изготовила устройство для навивки оптического кабеля на провода линий электропередачи (патентная заявка 93-017667/07) и в настоящее время занимается отработкой технологии навивки оптического кабеля на грозозащитный трос ВЛ. Фирма Alcoa Fujikura LTD предложила оптический кабель для навивки с помощью устройства, разработанного фирмой ОРГРЭС.

Понятно, что по техническим параметрам оптические кабели, предназначенные для навивки на трос, отличаются от кабелей, предназначенных для навивки на фазовые провода. При навивке кабеля на фазовый провод следует учитывать максимально допустимую температуру проводника, которая определяется максимальной температурой нагрева фазового провода или троса. Так по российским стандартам для стального троса допустимая температура нагрева при токе короткого замыкания 400°С, рабочая температура определяется температурой окружающей среды как максимально, так и минимально возможной для конкретного района подвески. Для сталеалюминиевого троса и фазовых проводов допустимая температура нагрева при токе короткого замыкания 200°С. Таким образом, по температурному режиму навивка оптического кабеля на фазовые провода или сталеалюминиевые тросы более предпочтительна. При этом следует учитывать, что при навивке на трос возможны удары грозовых разрядов, которые также могут приводить к повреждению оптического кабеля.

Однако, как и в случае подвески неметаллических оптических кабелей на линиях электропередачи, при навивке на фазовый провод необходимо учитывать влияние электрического поля на оболочку кабеля, которая может быть подвержена эрозии в результате действия градиента поля и влаги. Кроме того, при навивке оптического кабеля на фазовый провод необходимо применять такой способ крепления кабеля на опоре, при котором будет невозможна утечка тока на землю.

По конструктивному решению навивные оптические кабели принципиально не отличаются от неметаллических подвесных оптических кабелей и соответственно к ним должны предъявлятся те же требования по надёжности их механических и оптических параметров. При этом кабели данного типа должны иметь минимальный диаметр и массу.

На рисунке 3.8,а представлена типовая конструкция оптического кабеля навивного типа, предлагаемого фирмой Fokas Limited [6]. В конструкции кабелей этой фирмы предусмотрена свободная укладка волокна в полимерной трубке (loose tube), в качестве силовых элементов используются стеклопластиковые стержни. Расчётная разрывная нагрузка кабелей составляет

45 кгс, при этом масса кабелей колеблется от 20 - 59 кг/км, диаметр кабелей изменяется от 5,3 до 8,1мм. По стойкости к температуре кабели различаются: при навивке на фазовый провод кабель должен выдерживать максимальную температуру 3000С, при навивке на грозозащитный трос - 2000С.

На рисунке 3.8,б представлена типовая конструкция кабеля, предложенная фирмой Furucawa Electric CO LTD для навивки на трос . Растягивающая нагрузка кабелей этой фирмы колеблется от 100 до 200кгс при диаметре кабелей 3 - 4мм, диапазон рабочих температур от -200С до 1500С. кабель выдерживает воздействие электрического поля при сырой погоде до 150 кВ/м.

Конструкция кабеля для навивки на трос и фазные провода, предложенная фирмой Alcoa Fujikura LTD, показана на рисунке 3.8,б . Длительно приложенная растягивающая нагрузка для кабелей этой фирмы лежит в пределах от 45 до 60кгс, допустимая кратковременная растягивающая нагрузка для составляет 90 - 120кгс, масса кабелей соответственно изменяется от 28 до 59кг/км, диаметр кабелей составляет 4,6 - 6,6мм. материал оболочки кабеля этой фирмы способен выдерживать температуру до 2200С, а также устойчив к образованию трекинга. Фирма Alcoa Fujikura LTD готова поставлять кабель для навивки на стальной грозозащитный трос, который соответственно будет выдерживать температуру нагрева до 4000С.

Таким образом, в настоящее время представляется возможным в России проводить работы по строительству оптических линий связи с помощью навивки оптического кабеля на провода ВЛ.

3.5 Обоснование выбора типа оптического кабеля

С позиции технических требований, предъявляемых к магистральным и внутризоновым линиям передачи ВСС РФ, сегодня наилучшими потребительскими свойствами обладают оптические кабели, встроенные в грозозащитный трос . Можно отметить следующие преимущества ОКГТ:

  • Высокая надежность (обрывы ОКГТ не превышают 0,05 - 0,1 случая на 100 км в год );
  • Защищенность оптических волокон от внешних электромагнитных влияний, так как ОКГТ экранирован одним или двумя слоями проволок;
  • Большой срок службы (до 25 лет);
  • Использование ОКГТ для создания ВОЛС на ВЛ 110- 500кВ.

В данном проекте предусмотрена подвеска оптического кабеля, встроенного в грозозащитный трос, марки ОКГТ - МТ - 4 - 10/125 - 0,36/0,22 - 13,1 - 81/72 производства АОЗТ «Самарская оптическая кабельная компания», на существующих опорах действующей ВЛ 220кВ ПС Восточная - Заря.

В таблице 3.1 приведены основные параметры ОКГТ - МТ - 4 - 10/125 - 0,36/0,22 - 13,1 - 81/72.

ПараметрыЗначения12Количество одномодовых оптических волокон4Коэффициент затухания, дБ/км, не более на длине волны 1,31 мкм на длине волны 1,55 мкм 0,36 0,22Хроматическая дисперсия, пс/нм*км, не более на длине волны 1,31 мкм на длине волны 1,55 мкм 3,5 18Разрывная нагрузка, кг, не менее7200Кратковременная максимально допустимая растягивающая нагрузка (в течении 200ч за весь срок службы), кг, не менее 36500Среднеэксплуатационная растягивающая Нагрузка, кг, не менее 1470Модуль упругости кабеля, кг/мм2, не менее13214Коэффициент термического удлинения кабеля, 1/0С, не более 16,0*10-6Импульс тока короткого замыкания в течении 1 сек, кА, не менее 9,1Термическая стойкость к КЗ, кА2*0С81Номинальный наружный диаметр, мм13,1Номинальный вес, кг/км540Минимальный радиус изгиба, мм Во время прокладки После прокладки 340 250Температурный диапазон, 0СОт -60 до +60

Конструкция ОКГТ - МТ - 4 - 10/125 - 0,36/0,22 - 13,1 - 81/72 представлена на рисунке 3.4.

4. Расчет параметров оптического кабеля

Основными параметрами оптического кабеля являются:

числовая апертура (NA), характеризующая эффективность ввода (вывода) световой энергии в оптическое волокно и процессы её распространения в оптическом кабеле;

затухание (a), определяющее дальность передачи по оптическому кабелю и его эффективность;

дисперсия (t), характеризующая уширение импульсов и пропускную способность оптического кабеля.

4.1 Расчёт числовой апертуры и определения режима работы оптического кабеля

Важнейшей характеристикой световода является апертура NA, представляющая собой синус максимального угла падения лучей на торец световода, при котором в световоде луч на границу

сердцевина - оболочка падает под критическим углом qкр. Числовая апертура характеризует эффективность ввода излучения в световод и рассчитывается по формуле:

NA= n0*sinqкр=n0Ön2- n2,(4.1)

где NA - числовая апертура;

n0_ показатель преломления окружающей среды (воздуха);

qкр- критический угол падения.

Если торец световода граничит с воздухом, то n0=1. Для заданных показателей преломления n1=1,4616 и n2=1,46 найдём числовую апертуру по формуле 4.1

NA=Ö1,46162-1,462 = 0,068

Режим работы оптического волокна оценивается значением обобщённого параметра, называемого нормированной (безразмерной) частотой.

Расчет нормированной частоты производится по формуле:

n= 2Па/l*NA, (4.2)

где а - радиус сердцевины оптического волокна, а=25 мкм;

l- длина волны, l=1,31 мкм;

NA-числовая апертура, NA=0,068.

n=2*3,14*5*10-6/1,31*10-6 *0,068=1,62

n=1,62>2,405- это означает, что режим работы оптического волокна одномодовый.

4.2 Расчет затухания оптического кабеля

Важнейшим параметром световода является затухание. Затухание сигналов в волоконном световоде ОК является одним из основных факторов, определяющих максимальное расстояние, на которое можно передать сигнал без промежуточных регенераторов.

Затухание световодных трактов волоконно- оптических кабелей aобусловлено собственными потерями в волоконных световодах и дополнительными потерями, обусловленными деформацией и изгибами световодов при наложении покрытий и защитной оболочки при изготовлении кабеля, и определяется по формуле:

a = aс

Вы нуждаетесь в качественном выполнении работ по прокладке и монтажу ВОЛС? Компания «НАВИГАТОР» станет вашим надежным партнером

Компания «Навигатор» оказывает услуги по строительству и проектированию волоконно-оптических линий связи.

Преимущества волоконно-оптических линий связи

Проектирование и строительство ВОЛС обеспечит вашей компании целый ряд преимуществ:

  • широкая полоса пропускания дает возможность передавать значительные информационные потоки;
  • в оптоволокне наблюдаются минимальные значения затухания сигнала, а это позволяет строить достаточно протяженные сети ВОЛС;
  • такие линии хорошо защищены от помех, поскольку не восприимчивы к электромагнитным колебаниям;
  • информационные потоки будут надежно защищены от несанкционированного доступа;
  • линии на основе оптоволокна имеют долгий срок полезной эксплуатации – свыше четверти века, поэтому прокладка сетей ВОЛС экономически оправдана.

Почему стоит выбрать нас

Более 10 лет на рынке

Проектирование сетей любой сложности

Качественное оборудование и материалы

Гарантия на выполненные работы

Скидки постоянным клиентам

Стоимость ВОЛС

Показать цены подробнее

Сварка и разделка оптоволоконного кабеля
№ п\п Наименование Ед.изм Цена
1 Сварка 1-8 волокон шт.
550 руб.
2 Сварка 9-16 волокон шт. 500 руб.
3 Сварка 17-32 волокон шт. 450 руб.
4 Сварка 33-64 волокон шт. 400 руб.
5
Сварка 65 и более волокон
шт. 350 руб.
6
Зачистка кабеля
шт. 400 руб.
7
Зачистка бронированного кабеля
шт. 700 руб.
8
Монтаж волоконно-оптического кабеля в оптический кросс, муфту
шт. 700 руб.
Другие работы по монтажу и тестированию оптоволокна
№ п\п Наименование Ед.изм Цена
1 Входной контроль оптоволоконного кабеля шт. 250 руб.
2 Тестирование рефлектометром с предоставлением формы шт. 350 руб.
3 Установка органайзеров, сетевого оборудования в шкаф (стойку) шт. 350 руб.
4 Монтаж сетевого оборудования на стену шт. 350 руб.
5
Поиск и локализация места обрыва, перекрутки, зажима и т.п.
шт. от 2500 руб.
Наценки при выполнении работ
№ п\п Наименование К цене (%)
1 Наценка за работу в работающем офисе 10
2 При выполнении работ на улице при температуре ниже 0 30
3 При выполнении работ на высоте от 2,5 до 4,0 м (кроме подвески на тросе) 30
4 При выполнении работ на высоте от 4,0 до 7,0 м (кроме подвески на тросе) 50
5
При выполнении работ на высоте свыше 7,0 м (кроме подвески на тросе)
70
6
При выполнении работ в нерабочее время
70
7
При выполнении работ за пределами КАД (до 30 км)
30

Предлагаем вам ряд своих услуг в области сетей ВОЛС:

  1. Организацию длинной магистральной линии связи общей протяженностью в несколько десятков километров;
  2. Построение на объектах, значительных по площади, высокоскоростных вертикальных подсистем;
  3. Организацию скорости передачи данных до десяти гигабит в секунду, с технологией агрегации – намного выше;Возможность предоставления самостоятельного выбора оборудования (при проектировании ВОЛС) в зависимости от ценовой категории:
    • D-Link
    • Cisco
    • Zyxel и многие др.
  4. Большой срок службы наряду с хорошей защитой от несанкционированных доступов, а также устойчивость к электромагнитному воздействию.

В нашей компетенции проведение работ по монтажу ВОЛС:

  1. Внутренняя и внешняя прокладка ВОЛС;
  2. Сварка оптики (процесс оконцовки оптического кабеля);
  3. Монтаж ВОЛС наряду с оптическими кроссами и муфтами;
  4. Процесс соединения оптических волокон при помощи сварки. Разделка кабеля сварочным методом;
  5. Процессы выбора, прокладки и настройки активного оборудования ВОЛС;
  6. Тестирование сети.

Также мы рады предложить вам услуги по строительству ВОЛС для:

  1. Для объединения различных объектов в одну общую сеть СКС. Для этого мы используем внешний кабель;
  2. Для протяженных, а также многоэтажных зданий с использованием волоконно-оптического кабеля для внутренней прокладки;
  3. Защиты от каких-либо электромагнитных помех;
  4. Безопасности информации.

Доверьте работу нашим высококлассным специалистам – мастерам своего дела. Они обладают всеми необходимыми знаниями основных требований, которые предъявляются к процессу строительства ВОЛС. Соблюдая данные правила и требования, специалисты полностью гарантируют соответствие проекта ВОЛС с конечной целью заказчика!

Основные требования и правила проектирования ВОЛС:

  1. При выборе нужного объекта информации, которая пропускается через ВОЛ, учитывают ширину полосы, число всех стандартных каналов наряду со скоростью передачи и тональной частотой. Разные объекты характеризуются своими индивидуальными параметрами.
  2. Точное определение типа информации, которая делится на цифровую и аналоговую.
  3. Измерение уровня устойчивости системы к шумам и помехам, возникающим на ВОЛ.
  4. Точный учет расстояния (дистанции) между устройствами и терминалами, их числовое соотношение и технические характеристики и т. д.

Результатом нашей деятельности является наличие множества довольных клиентов и отлично работающей волоконной оптики и кабельных систем по всей России!

Компания «Навигатор» осуществляет проектирование и строительство сетей ВОЛС любой сложности в оптимальные сроки. Опытные сертифицированные специалисты гарантируют высокое качество осуществляемых работ: наши сети коммуникации ВОЛС надежны и работают без сбоев.

Монтаж сетей ВОЛС мы осуществляем с использованием качественных материалов от ведущих производителей и современного высокотехнологичного оборудования.

Выбор редакции
1.1 Отчет о движении продуктов и тары на производстве Акт о реализации и отпуске изделий кухни составляется ежед­невно на основании...

, Эксперт Службы Правового консалтинга компании "Гарант" Любой владелец участка – и не важно, каким образом тот ему достался и какое...

Индивидуальные предприниматели вправе выбрать общую систему налогообложения. Как правило, ОСНО выбирается, когда ИП нужно работать с НДС...

Теория и практика бухгалтерского учета исходит из принципа соответствия. Его суть сводится к фразе: «доходы должны соответствовать тем...
Развитие национальной экономики не является равномерным. Оно подвержено макроэкономической нестабильности , которая зависит от...
Приветствую вас, дорогие друзья! У меня для вас прекрасная новость – собственному жилью быть ! Да-да, вы не ослышались. В нашей стране...
Современные представления об особенностях экономической мысли средневековья (феодального общества) так же, как и времен Древнего мира,...
Продажа товаров оформляется в программе документом Реализация товаров и услуг. Документ можно провести, только если есть определенное...
Теория бухгалтерского учета. Шпаргалки Ольшевская Наталья 24. Классификация хозяйственных средств организацииСостав хозяйственных...