Перспективы развития мировой электроэнергетики. Проблемы и перспективы развития энергетики в россии и мире


Международная научно- практическая конференция « Малая энергетика-2005»

Дьяков А.Ф., Научный совет РАН по надёжности и безопасности больших систем энергетики, Москва, Россия

О роли и месте малой энергетики . Прежде всего, хотел бы отметить, что главным гарантом надёжного и безопасного обеспечения энергией потребителей нашей страны по-прежнему остаётся Единая энергетическая система России.

Однако, даже в ХХI веке, Единая энергетическая система охватывает немногим более 30 % территории страны, остальные 70 % - обеспечивают электроэнергией электростанции, работающие в автономном режиме или локальные энергосистемы, такие как Камчатская, Магаданская и Сахалинская. Поэтому перспективы развития малой энергетики, видимо, следует рассматривать с учётом этих обстоятельств, то есть в зоне ЕЭС и вне её, так как эти проблемы в каждой из этих зон решаются по-разному.

На территории страны, которую не охватывает ЕЭС, мы должны обеспечивать развитие малой и возобновляемой энергетики, в основном, за счёт создания комбинированных (гибридных) электростанций, на базе 2-х, 3-х и более источников энергии. Например, ветро-дизельных, ветро-солнечных, ветро-гидравлических или солнечно-теплонасосных станций.

При этом крайне важно, использовать на малых электростанциях именно те источники энергии, которые позволяют свести к минимуму завоз топлива в отдалённые и труднодоступные регионы, особенно районы Крайнего Севера.

При развитии малой энергетики в зоне ЕЭС, надо исходить из того, что она не предназначена решать проблемы обеспечения надёжности и живучести Единой энергетической системы в условиях быстрого роста энергопотребления. Но в период плавного, постепенного роста энергопотребления, на этапе реформирования энергетики, адаптации её к рыночным отношениям, малая энергетика, безусловно, может сыграть важную роль.

Кроме того, с целью обеспечения гарантированного энергоснабжения важнейших объектов жизнеобеспечения на случай аварийного отключения их от ЕЭС, малые автономные электростанции на этих объектах могут использоваться в качестве резервных мощностей. В необходимости такого резервирования мы ещё раз убедились, во время системной аварии 25 мая 2005 г. в Московской и смежных - Калужской, Рязанской, Смоленской и Тульской энергосистемах.

Сегодня, когда в нашей стране идёт реформирование электроэнергетики, происходит не только изменение структуры управления отраслью, но и изменение денежных потоков, прежде всего, их дальнейшее дробление.

В связи с чем, изыскание собственных средств на строительство крупных электростанций и даже отдельных энергоблоков, во многих случаях, просто невозможно. Наглядный пример тому, последствия реформирования электроэнергетики в Англии и других странах.

В этих условиях, в ближайшие годы мы реально можем рассчитывать лишь на незначительные объёмы инвестиций и строительство, в основном, небольших электростанций. Реализация таких проектов позволяет сократить объём инвестиций, сроки их возврата, снизить инвестиционные риски.

При этом важно помнить и считаться с тем, что доля инвестиций на один кВт установленной мощности малых электростанций больше, чем крупных. К тому же, следует признать, что уровень нынешних заниженных тарифов, не создаёт благоприятных экономических условий для развития малой энергетики, так как ведёт к увеличению сроков окупаемости даже таких небольших электростанций.

Сегодня, крайне важно, изучить рынок малой энергетики, чтобы с его учётом строить работу не только энергетиков, но и машиностроителей, производящих энергооборудование для этих электростанций.

Однако приходится констатировать, что рынок малой энергетики развивается пока, в основном в Европейской части страны, где успешно функционирует Единая энергетическая система. Тогда как сама жизнь, нужды населения, потребности развития промышленности, транспорта, сельского хозяйства страны, требуют более активного продвижения малой энергетики в Сибирь, на Дальний Восток, в районы Крайнего Севера, где нет возможности компенсировать нехватку электроэнергии, используя возможности ЕЭС.

Вполне понятно, что в перспективе более активно будет развиваться малая энергетика на базе возобновляемых источников энергии (ВИЭ), её доля, в общем объёме установленной мощности электростанций, несомненно, будет расти.

О важности более широкого использования возобновляемых источников энергии в XXI веке, вряд ли кого-то надо убеждать. По прогнозу Европейского Совета по возобновляемой энергетике (Renewable Energy World. Juiy-August 2004), доля ВИЭ в мировом потреблении первичной энергии к 2040 году достигнет 47,7 % (рис.1).

Сегодня всем ясно, что основные не возобновляемые энергоресурсы, раньше или позже, исчерпаются. По одним прогнозам угля хватит на 1500 лет, нефти - на 250, газа -на 120 лет. По другим прогнозам перспектива хуже. Нефть должна закончиться лет через 40, газ - через 80, уран - через 80-100 лет, угля может хватить ещё лет на 400.

Доля возобновляемых источников энергии, в общем, объёме энергопотребления, в мире постоянно увеличивается. По данным МИРЭС этот показатель в максимальном варианте к 2020 году может возрасти до 8 - 12 %. В лидеры по использованию возобновляемых источников энергии сегодня вышли страны Европейского Союза (ЕС). В директивных документах ЕС поставлена задача, вдвое увеличить долю ВИЭ в энергетическом балансе Европы (с 6% до 12%), в выработке электроэнергии - с 14% до 22% .

При этом большая часть доли ВИЭ в балансе электроэнергии приходится на гидроэнергетику, потенциал которой для строительства крупных ГЭС, практически исчерпан. Поэтому дальнейшее наращивание производства электроэнергии за счёт строительства гидростанций, связывается именно со строительством малых ГЭС.

Значительный рост доли ВИЭ в энергобалансе ЕС намечается обеспечить и за счет ветровой энергетики. Но это добавляет энергетикам много проблем, связанных с необходимостью развития электрических сетей, усложнением диспетчерского управления оперативными режимами, обеспечением надежности и безопасности энергоснабжения потребителей.

Кроме того, в зависимости от доли ветроэлектростанций, в суммарной установленной мощности энергосистем, тарифы на электроэнергию в этих странах, могут вырасти в ближайшее время на 13 - 25%, а в перспективе, при достижении намеченной доли ветровой энергетики в энергобалансе, рост тарифов может составить в среднем 34%.

Что касается данных о ресурсах возобновляемых источников энергии в России, то они представлены в табл. 1. Причём значительными возобновляемыми ресурсами располагают большинство регионов страны, в том числе и проблемных, с точки зрения энергоснабжения.

Видимо, нет необходимости подробно их комментировать, отмечу лишь, что экономический потенциал ВИЭ в нашей страны составляет 270-335 млн. т у. т., то есть более 25 % от внутреннего энергопотребления. Однако, используется сегодня всего 1,5 млн. т у. т., а в общем энергобалансе нашей страны ВИЭ составляют не более 0,5 % по электроэнергии и 4 % - по теплу.

В соответствии со стратегией развития энергетики России на перспективу до 2020 года возобновляемые источники энергии будут составлять пока незначительную долю в силу своей дороговизны и невысокой надежности.

В связи с чем, малую энергетику на базе возобновляемых источников энергии на ближайшую перспективу надо рассматривать, прежде всего, как средство решения проблем энергоснабжения в отдалённых и труднодоступных регионах, как средство решения экологических проблем, которые всё больше обостряются, и, наконец, как средство энергосбережения.

Газотурбинные (ГТУ) и парогазовые (ПГУ) энергетические установки. Они являются сегодня наиболее перспективными источниками тепловой и электрической энергии. Речь идёт, прежде всего, о малых модульных электростанциях на базе отечественных ПГУ и ГТУ (2,5, 4,0, 6.0, 8,0 и 12,0 МВт) с использованием газа, разумеется, там, где он уже есть или где можно и экономически выгодно проложить газопровод.

В табл. 2. даны основные технические характеристики малых энергетических установок на газе: ГТЭС «Урал-2500», «Урал-4000» и Урал-6000». Особо следует отметить высокий КПД этих станций - 79,0 %, 81,0 % и 83,1 % соответственно.

Сегодня нельзя сбрасывать со счетов возможность создания на действующих муниципальных и ведомственных котельных небольших газотурбинных и парогазовых установок, для производства электроэнергии, то есть превращение их в малые или мини-ТЭЦ. Строительство таких мини-ТЭЦ не требует значительных затрат времени и средств, но добавка выработки электроэнергии может быть существенной, что крайне важно при нынешнем дефиците инвестиций. Разумеется, речь идёт о котельных на газе и тех из них, где для такой реконструкции есть возможности.

Нельзя забывать и такое важное направление увеличения энергопроизводства, как создание мини-ТЭЦ на базе небольших ГТУ и ПГУ с использованием газа и тепла, применяемых в производственном процессе предприятий. Большие возможности для увеличения выработки электроэнергии и тепла имеются, например, у сахарных заводов, которые также можно реализовать путём пристройки к ним небольших ПГУ и ГТУ.

Необходимо более широко использовать для наращивания производства электроэнергии электростанции, создаваемые на базе компрессорных станций магистральных газопроводов страны, используя в этих целях турбодетандеры, газовые турбины с нагнетателем газа, а также регенераторы тепла сжатого воздуха компрессоров. Надо отметить, что Газпром проводит определённую работу в этом направлении, но объединение с ним усилий РАО «ЕЭС России» может дать значительно больший эффект.

Дизельные электростанции (ДЭС). Они составляют основу электроснабжения в арктических районах России. Только в этом регионе работает примерно 47 тыс. малых дизельных электростанций.

Однако, большинство ДЭС имеют низкий КПД (до 0,4) и ограниченный ресурс службы, высокие удельные расходы (250-300 г/кВт·ч.) очень дорогого дизельного топлива (в 6-7 раз дороже газа и в 2 раза - топочного мазута). По сравнению с другими малыми электростанциями ДЭС имеют сверхнормативные значения выбросов загрязняющих веществ, а себестоимость, вырабатываемой ими электроэнергии, достигает 6 руб./кВт·ч.

Кроме того, отечественные дизельные энергоустановки всё ещё уступают лучшим зарубежным ДЭС по экономичности и надёжности, а также по габаритам и массе на единицу установленной мощности.

Поэтому в целях дальнейшего повышения эффективности и надёжности ДЭС необходимо повышать их удельную мощность на единицу массы, внедрять газотурбонаддув, переводить на газовое и нефтяное топливо, расширять производство автоматизированных ДЭС контейнерного типа, развивать систему сервисного обслуживания предприятиями-изготовителями.

Газодизельные электростанции (ГДЭС). В последнее время во всём мире активно внедряются ГДЭС, использующие природный газ. У газопоршневых электростанций топливная составляющая стоимости электроэнергии в 2-2,5 раза меньше, чем у обычных ДЭС. Что ещё важно, так это то, что газопоршневые двигатели малых электростанций могут работать и на промышленных газах: коксовом, биогазе, шахтном и др. У нас ГДЭС внедряются пока медленно, хотя в настоящее время многие российские заводы приступили к производству таких электроустановок.

Гибридные электростанции. Наиболее перспективными в удаленных и арктических районах являются комбинированные (гибридные) электростанции, например, ветродизельные электростанции (ВДЭС). Такие электростанции обеспечивают сокращение потребления дизельного топлива на 30-50% и увеличивают жизненный цикл дизельгенераторов в 2-3 раза. Гибридные электростанции при своей круглогодичной эксплуатации снижают потребление жидкого топлива в 4-6 раз и имеют срок окупаемости не более 3-х лет.

Интерес представляет комбинированный автономный блок-модуль биогазо-ветро-солнечной тепло-электростанции ЗАО ЦЕНТР «ЭКОРОС», в состав которого входят:

Биогазовая теплоэлектростанция мощностью не менее 10-15 кВт (электрических) и не менее 60 кВт (тепловых);

Ветроэлектрическая станция мощностью не менее 16-32 кВт;

Станция солнечного теплоснабжения мощностью 2300 литров воды в сутки с температурой не менее 60 °С.

Малые атомные электростанции. В более отдалённой перспективе предпочтения, видимо, будут отдаваться малым АЭС, так как в удалённых и труднодоступных местах, особенно в условиях Крайнего Севера, куда сложно и крайне дорого обеспечить доставку топлива, они будут наиболее эффективными.

Пока малые атомные теплоэлектростанции (АТЭС ММ) намечается построить в четырех городах России: Вилючинске (Камчатка), Северодвинске (Архангельская область), Дудинке (Красноярский край) и Певеке (Чукотка).

Кроме того, всё более настоятельно требуется создание атомных электростанций мощностью от 1,5 до 6-10 МВт для снабжения энергоресурсами небольших селений и районов. Стратегия развития малой энергетики России для решения подобных задач предусматривает строительство плавучих АЭС с использованием судовых технологий, а в этом деле, как известно, у России опыт большой.

Однако на осуществление таких проектов требуются значительные инвестиции, что, в первую очередь, и тормозит строительство таких электростанций. Например, стоимость строительства атомной электростанции малой мощности в Северодвинске составит примерно 180-200 млн. долларов. Установленная мощность этой АТЭС ММ составит 70 МВт электроэнергии и 50 Гкал тепловой энергии, сроки окупаемости проекта не менее 13 лет.

Малая гидроэнергетика (МГЭС). Экономический потенциал гидроэнергетики в мире составляет 8100 млрд. кВт·ч. Доля малых и микроГЭС составляет около 10% общего экономического гидропотенциала мира. Лидером в развитии малой гидроэнергетики является Китай. Установленная мощность МГЭС в этой стране превышает 20 тыс. МВт. Широкое распространение малые ГЭС получили в Австрии, Финляндии, Норвегии и Швейцарии.

В России экономический потенциал МГЭС составляет 200 млрд. кВт·ч/год, а используется всего 1-2 %. В настоящее время в России работают немногим более 300 МГЭС, общей мощностью 1000 МВт. Разумеется, в ближайшие годы малые и микро-ГЭС будут востребованы и в нашей стране. Правительством Республики Дагестан, например, принята специальная «Программа строительства малых гидравлических электростанций в республике до 2010 г.», которая успешно выполняется.

На мой взгляд, назрело время вернуться к проблеме восстановления микро - и малых ГЭС в России. Как известно, в 50-60 годы малых ГЭС в нашей стране было более 10 тысяч, но в связи со строительством в последующие годы большого количества крупных электростанций, малые гидростанции были заброшены. По этим же причинам было прекращено и производство отечественного оборудования для таких гидростанций.

Однако сегодня, в связи развитием фермерских хозяйств на селе, увеличением количества небольших частных предприятий, интерес к малым и микро-ГЭС растёт. Это начинает учитывать и наша промышленность. В стране растёт производство оборудования для микро- и малых гидростанций. Интерес представляют разработки ОАО «МНТО ИНСЭТ». Мощность гидроагрегатов этого общества колеблется в диапазоне от 10 до 6000 кВт. Стоимость 1 кВт микро - и малых ГЭС составляет 300 -900 долларов США.

Геотермальная энергетика. Надо отметить, что установленная мощность ГеоТЭС в мире достигла свыше 8000 МВт. В США показатель установленной мощности приблизился к отметке 3000 МВт. Произведенное на ГеоТЭС электричество вместе с теплом, напрямую идущим на обогрев и промышленные нужды, составляет в энергобалансе этой страны более 1%. В Мексике геотермальная составляющая превышает 4%, но абсолютный лидер - Филлипины, где десятки ГеоТЭС общей мощностью 2000 МВт вырабатывают пятую часть всей электроэнергии, производимой в стране. В Исландии все потребности страны в тепле и электроэнергии обеспечиваются за счёт геотермальных ресурсов.

Россия располагает огромными геотермальными ресурсами, используя которые для теплоснабжения городов и поселков, наша страна могла бы экономить 20-30% ископаемого топлива в течение ближайших 5-10 лет. Но, обладая такими запасами геотермальной энергии и являясь технологическим лидером в этой области, Россия значительно отстаёт в их практическом использовании.

В настоящее время в нашей стране действуют 3 геотермальных электростанции, расположенные на Камчатке: Паужетская ГеоЭС, Верхне-Мутновская ГеоЭС и Мутновская ГеоЭС. Их суммарная мощность составляет более 70 МВт. Кроме того, на Курильских островах работает три небольшие геотермальные установки.

Ведётся строительство 3-го блока Мутновской ГеоЭС, которая состоит из 4-х блоков по 25 МВт. ОАО "Геотерм" разработало также ТЭО инвестиций на сооружение 4-го блока Верхне-Мутновской ГеоЭС с использованием бинарного цикла, что позволит увеличить эффективность использования геотермального теплоносителя на 20-25%. Схема геотермальной бинарной электрической станции представлена на рис. 2.

В Ставропольском крае одобрена концепция и бизнес-план комплексного использования геотермальных ресурсов Казьминского месторождения. Температура воды здесь достигает 124 °С, а наличие 14 пробуренных скважин позволяет получить в год не менее 24 млн. кВт·ч электроэнергии, вырабатываемой на бинарной ГеоЭС, и около 300 тыс. Гкал тепла. В Краснодарском крае подготовлен проект использования геотермальных вод для тепло- и электроснабжения г. Лабинска общей тепловой мощностью 100 МВт и электрической - 4,0 МВт.

Важно отметить, что для развития геотермальной энергетики в стране имеется необходимое отечественное оборудование, производство которого налажено в ОАО «Калужский турбинный завод».

Дальнейшее расширение промышленного использования месторождений геотермальных вод позволит нашей стране в значительной мере сократить потребление природного газа за счет перехода на использование более дешевых источников энергии. Одним словом, в ближнесрочной перспективе, среди возобновляемых источников энергии, геотермика, опирающаяся на турбинные технологии, будет играть важную роль.

Тепловые насосы (ТН). Прежде всего, важно отметить, что тепловые насосы, используя низкопотенциальное тепло воздуха и грунтовых вод, производят тепла в 3 -7 раз больше, чем потребляют электрической энергии. В настоящее время в мире более 10 млн. ТН, общей мощностью 30 тыс. МВт. Широко применяются тепловые насосы в Швеции, Германии, Австрии, США и Японии. По прогнозам МИРЭС доля тепловых насосов в теплоснабжении в мире к 2020 г. составит 75 %.

В России тепловые насосы используются пока недостаточно, хотя возможности для использования их огромны. В нашей стране сегодня немногим более 100 ТН, а их суммарная мощность составляет примерно 30 МВт.

На рис. 3 представлена схема одного из тепловых насосов, производимого ЗАО НПФ «Тритон-лтд». Стоимость оборудования ТН колеблется в пределах от 80 до 180 долларов США за 1 кВт тепловой энергии, а сроки окупаемости, не превышают 3 лет.

Перспективным направлением применения тепловых насосов является использование тепла обратной сетевой воды в системах дальнего транспортирования тепла, а также - дымовых газов. Причём, чем выше температура используемого источника тепла, тем лучше энергетический баланс. При этом, большинство теплонасосных систем обходятся без поддержки отопительных котлов даже в самые холодные периоды времени, поэтому перспективы таких установок в нашей стране огромны.

Приливные электростанции (ПЭС). Общий потенциал использования приливной энергии мирового океана оценивается в 800 ГВт, что может обеспечить до 15% мирового энергопотребления. В настояшее время действует ПЭС Ранс во Франции (249 МВт), Аннаполис - в Канаде (20 МВт), три ПЭС - в Китае, одна - в Корее, а также Кислогубская ПЭС (400 кВт) в России.

В России есть большие возможности для строительства приливных станций. По расчетам ученых, лишь в Европейской части и на Дальнем Востоке нашей страны от энергии прилива может быть получено более 120 ГВт мощности.

Специалистами Научно-исследовательского института энергетических сооружений разработана для приливных электростанций принципиально новая, ортогональная турбина, не имеющая аналогов в мире. Ими подготовлены также предложения по строительству на базе типового блок-модуля, с использованием ортогональной турбины, Тугурскую ПЭС (мощностью 8 млн. кВт) и Мезенской ПЭС (11,4 млн. кВт). Использование новой турбины на этих ПЭС позволиет уменьшить капитальные вложения на их сооружение на 17 %, по сравнению с затратами на ПЭС с осевыми капсульными агрегатами.

Энергоустановки с использованием топливных элементов (ТЭ). В последние годы во многих странах высокими темпами развивается электрохимическая энергетика с использованием водорода и топливных элементов. Высокая эффективность ТЭ, отсутствие движущихся частей, шума, экологическая чистота вызывают всё больший интерес к таким установкам.

Рынок топливных элементов в США, например, за последние 5 лет вырос с 218 млн. до 2,4 млрд. долларов, при среднегодовом росте 62 %. Большое внимание использованию топливных элементов уделяют Европейский союз, Япония и Англия. В Японии, например, планируется создать до 2010 г. энергоустановок на топливных элементах общей мощностью 2000 МВт. В Великобритании с помощью регенеративных топливных элементов планируется выравнивать графики нагрузки.

В США, Германии и Японии создаются комбинированные энергетические установки по выработке электроэнергии и тепла с использованием топливных элементов, ГТУ, ПГУ, энергии ветра и солнца, получившие название гибридных энергоустановок (ГИЭУ). Реально достигнутый КПД ГИЭУ в настоящее время составляет 60 %, к 2010 г. намечается достигнуть 70 %, а в перспективе, при комбинированной выработке электрической и тепловой энергии, - 85-90 %.

В России также многие годы успешно ведутся работы по созданию энергоустановок на базе топливных элементов, предназначенных в первую очередь для космических исследований. В последнее время к созданию высокоэффективных энергоустановок на основе топливных элементов, в том числе и гибридных, подключились и наши отраслевые институты. Одним словом, это перспективное направление в энергетике, несомненно, получит дальнейшее развитие и займёт важное место в малой энергетике нашей страны.

Ветроэнергетические установки (ВЭУ). Передовые страны мира определили своей целью увеличить долю выработки электроэнергии ветроэлектростанциями к 2020 году до 12%. При поддержке и поощрении государства ветроэнергетика успешно развивается в таких странах, как: Германия, Дания, США, Великобритания, Испания, Индия. В 2002 году суммарная мощность ветроустановок в мире достигла 31 ГВт, к концу 2003 г. - почти 37 ГВт, в текущем году - более 50 ГВт.

В США, например, мощность смонтированных ветроустановок сегодня составляет порядка шести тысяч МВт, а к 2020 году, в соответствии с принятой программой развития ветроэнергетики в стране, должна достигнуть 80 тысяч МВт.

Россия также обладает огромными ветроэнергетическими ресурсами, особенно на территории Крайнего Севера, Юга России и Дальнего Востока - где использование энергии ветра экономически выгодно. Экономический потенциал ветровой энергии в нашей стране составляет примерно 260 млрд. кВт×ч/год, т.е. около 30% производства электроэнергии всеми электростанциями России.

Первая в мире ветроэлектростанция ЦАГИ Д-30, мощностью 100 кВт была построена в 1932 году в Крыму. Но увлечение масштабными энергетическими проектами в шестидесятые-восьмидесятые годы в нашей стране надолго затормозило развитие малой энергетики.

Тем не мене, в России уже действуют:

Заполярная ветроэлектростанция мощностью 1,5 МВт (Комиэнерго),

Куликовская ВЭС - 5,1 МВт (Янтарьэнерго),

Маркинская ВЭС - 300 кВт (Ростовэнерго),

Марпосадская ВЭС - 215 кВт (Чувашэнерго),

ВЭС «Тюпкельды» - 2,2 МВт (Башкирэнерго),

Чукотская ВЭС на мысе Обсервации - 2,5 МВт (Чукотэнерго),

ВЭС на острове Беринга - 500 кВт (Камчатскэнерго).

На Калмыцкой ВЭС мощностью 22 МВт (Калмэнерго), из-за отсутствия средств смонтированы пока только 2 ВЭУ «Радуга-1000», а работает одна. На побережье Финского залива в Ленинградской области намечается построить первую в России промышленную ветроэлектрическую станцию мощностью 75 МВт. На её строительство потребуется примерно 100 млн. долларов США.

В настоящее время изучается возможность строительства в Калининградской области "Морского ветропарка", состоящего из 25 ветроустановок по 2 мегаватта каждая, в 500 метрах от берега Балтийского моря. Реализация этого проекта, явится первым шагом в нашей стране по использованию шельфовой зоны моря для возведения ВЭС большой мощности.

Строительство ветроэлектростанций, безусловно, будет продолжаться и дальше, но их сооружение должно осуществляться, прежде всего, в тех местах, где не только хорошие ветра, но и отсутствует централизованное электроснабжение, так как эффективность ВЭС пока мала, а стоимость электроэнергии, произведенной ими, в 3 раза больше, полученной от традиционных источников. Поэтому сроки окупаемости таких станций велики.

Солнечные энергоустановки. На мой взгляд, достойное место в энергобалансе многих регионов нашей страны в перспективе могут занять солнечные энергоустановки, особенно горячего водоснабжения.

Солнечные установки теплоснабжения и горячего водоснабжения наибольшее распространение получили в Краснодарском крае. Одна из первых энергоустановок в крае действует с 1989 г. на крыше издательства "Советская Кубань"(432 коллектора), В пансионате "Лесная поляна" в 1999 г. установлено 68 коллекторов, которые обеспечивают горячее водоснабжение в летнее время. Хорошо себя зарекомендовали солнечные установки горячего водоснабжения Краснодарской краевой больницы и санатория «Лазаревское» в г. Сочи.

Сегодня наиболее перспективными являются солнечные установки теплоснабжения и горячего водоснабжения для индивидуальных потребителей. Стоимость системы горячего водоснабжения и отопления, например, для дома площадью до 250 м 2 , с использованием солнечных коллекторов, срок эксплуатации которых не менее 30 лет, обойдётся владельцу около десяти тысяч долларов США, или 90 центов в день.

В последние годы в нашей стране не только расширяется производство солнечных коллекторов, но и повышается их качество, снижается себестоимость. Например, солнечные коллектора ОАО «Ковровский механический завод» и ФГУП НПО «Машиностроение» по своим характеристикам не уступают лучшим мировым аналогам. Причём один м 2 такого коллектора стоит примерно 170 долларов США.

В области солнечной электроэнергетики наиболее перспективными признаны фотоэлектрические установки с прямым преобразованием солнечного излучения в электроэнергию с помощью солнечных фотобатарей. Фотоэлектрические модули, преобразующие энергию солнечных лучей в электричество, имеют в своей основе кристаллический или аморфный кремний и, в зависимости от площади модуля, мощность его может достигать 80-1000 и более Вт, а снимаемое напряжение составляет 12, 24, 48 В (табл. 3).

В настоящее время в мире наблюдается настоящий бум производства фотоэлементов для прямого преобразования солнечной энергии - в электрическую. Ежегодные темпы их роста за последние годы составили 30 %. В США, их годовое производство достигло 60 МВт, в Японии - 80 МВт, в Германии - 50 МВт. В Германии и США успешно реализуется специальные программы в этой области электроэнергетики.

Однако, солнечная энергия пока дорога и малоэффективна, требует больших затрат на эксплуатацию. Цена электроэнергии на солнечных фотоэнергетических установках хотя и снизилась за последние годы, но всё ещё велика, около 20 центов за кВт.ч.

Энергетические установки с использованием биомассы. В большинстве стран Западной Европы, в США, Канаде, а также в Китае, Индии и Бразилии, большое внимание уделяется использованию биомассы, как источника экологически чистого топлива и энергии.

В России ежегодное количество органических отходов составляет более 390 млн. тонн, в том числе сельскохозяйственных - более 250 млн. тонн. Сегодня у нас имеются интересные разработки энергетических установок для использования энергии биомассы, налаживается производство отечественного оборудование для них.

Но пока мы имеем дело, как правило, лишь с экспериментальными и демонстрационными образцами. Например, на рис. 4 представлена схема биогазоэнергетического модуля БИОНЭ - 1, разработанного ЗАО ЦЕНТР «ЭКОРОС». На его базе построена первая биоэнергетическая мини-тепло-электростанция, с попутным производством органического удобрения, в Агроплемфирме «Искра» Московской области. Одним словом, разработки есть, но дальше опытно-эсперементальных установок дело не идёт. Хотя возможности для использования таких энергоустановок в нашей страны очень велики.

Мусоросжигательные заводы с энергетическими установками. Необходимость переработки во многих регионах постоянно увеличивающихся твёрдых бытовых отходов, настоятельно требует расширения строительства мусоросжигательных заводов с выработкой тепла и электроэнергии.

Сегодня мусоросжигательных заводов, производящих энергию, много в Германии, Японии, Швейцарии, Бельгии и других странах. В России такие заводы, активно стали строиться только в последние 15-20 лет. Они имеются во Владивостоке, Владимире, Москве, Мурманске, Пятигорске, Сочи и Челябинске. Строится такой завод и Санкт-Петербурге. В Москве имеется программа строительства 10 таких заводов. Однако эйфории по поводу дальнейшего тиражирования таких заводов, видимо, не должно быть. И на это имеются серьёзные причины.

Во-первых, сжигание твёрдых бытовых отходов, дело крайне дорогое и, во-вторых, далеко не безвредное. Все такие заводы относятся к опасным производствам, не ниже 2-й категории. Выбрасываемые ими диоксины - являются большой текущей проблемой этих заводов, а загрязнение окружающих территорий тяжёлыми металлами - большой и перспективной, так как избавиться от них не возможно в течение многих лет.

Именно этими причинам вызвано закрытие в последние годы некоторых мусоросжигательных заводов в Англии, Нидерландах, заражение территории вокруг которых диоксинами превышает среднее по стране в 50-100 раз. Такие же проблемы возникли в Польше и других странах. Одним словом, некоторые из этих заводов оказались опасней полигонов для захоронения мусора.

Поэтому решение о строительстве таких заводов на перспективу, видимо, следует принимать лишь с учётом конкретной ситуации с твёрдыми бытовыми отходами и состоянием экологии, сложившейся в том или ином регионе. К тому же, на большинстве наших мусоросжигательных заводов энергетические установки хотя и имеются, но по разным причинам фактически не работают.

Некоторые проблемы, которые следует учитывать при развитии малой энергетики, в том числе и на базе возобновляемых источников энергии.

Во-первых, речь идёт о необходимости учёта таких специфических особенностей работы энергоустановок на ВИЭ, как изменение водных, воздушных и солнечных потоков, неустойчивость в их работе, в том числе и длительные перерывы. В связи с чем, представляется целесообразным создавать гибридные энергоустановки, то есть одновременно использовать в них несколько источников энергии.

Во-вторых, при строительстве мини и малых электростанций надо использовать модули высокой заводской готовности, предусматривать автоматизированные системы управления ими, а так же периодическое обслуживание их силами заводов - изготовителей оборудования.

В-третьих, при создании энергоустановок ВИЭ надо быть готовым к большим первоначальным инвестициям и высоким тарифам на энергию. К уровню действующих в энергетике России тарифов, приближается стоимость электроэнергии, вырабатываемой только энергоустановками, с использованием геотермальных вод. Стоимость электроэнергии, вырабатываемой электростанциями на базе других ВИЭ, значительно дороже.

В-четвёртых, крайне важно, искать пути экономии затрат на эксплуатацию таких электростанций. Например, обеспечить их пуск, работу и останов в автоматическом режиме, а обслуживание и ремонтные работы выполнять вахтовым методом. Разумеется, что всё это требует ускоренного развития в энергетике, средств связи и телемеханики.

В-пятых, предпринимая шаги по расширению в перспективе строительства малых электростанций, мы должны решать и проблемы, которые с этим связаны. Речь идёт, в частности, об адаптации малых энергетических установок к работе в составе Единой энергетической системы, а также о параллельной работе с другими электростанциями.

Узнайте актуальную информацию о

Энергия является основой обеспечения необходимых условий жизнедеятельности и развития человечества, уровня его материального и экономического благополучия, а также взаимоотношений общества с окружающей средой. Самым удобным в использовании и экологичным энергоносителем является электроэнергия. Она является базой ускорения научно- технического прогресса, развития наукоемких отраслей и информатизации общества. Таким образом, на перспективу до 2035 г. ожидается рост электрификации мировой экономики и потребления электроэнергии. Для рассмотрения прогноза электроэнергетической отрасли, отметим факторы, которые могут вызвать изменение производства и потребления электроэнергии:

· темпы экономического роста;

· рост численности населения;

· повышение эффективности использования энергии и энергосбережение;

· старение квалифицированных кадров электроэнергетики развитых стран;

· рост внимания к экологической безопасности, в том числе политика снижения выбросов CO 2 .

Рассмотрим общий прогноз производства электроэнергии.

Таблица Прогноз производства электроэнергии, ТВт-ч

Объем производства

Мы видим, что наибольший прирост производства ожидается к 2015 г.- 18%. Средние темпы прироста в период с 2008 по 2035 гг. составляют 13%.

Рассмотрим структуру видов производства электроэнергии в прогнозном периоде:

На диаграмме видно, что при росте производства электричества структура его источников практически неизменна. Основную долю в структуре производства электроэнергии составляет электроэнергия, произведенная на угольных ТЭС (около 39%). На втором месте стабильно находится электричество на основе природного газа: в среднем 23%. Изменения долей атомной и гидроэнергетик также не ожидается, они занимают в структуре по 14% и 16% соответственно. В прогнозируемом периоде ожидается небольшой рост доли электроэнергии на основе ВИЭ- с 3% до 7%,причем достижение 7% доли ожидается к 2020 г., в дальнейшем планируется стабильное развитие.

В прогнозе отмечается некоторое увеличение потребления угля для производства электроэнергии. Такой сценарий возможен: экономический рост Китая и Индии мотивирует их разрабатывать собственные залежи и развивать за счет дешевой добычи угля электроэнергетику и производство. Установленная мощность угольных генерирующих мощностей в этих странах возрастет с 2008 г. 2035 г. почти вдвое. Развитие отрасли потребует значительных инвестиций в добывающую отрасль и инфраструктуру (в том числе транспортную), так что в период развития отрасли, на наш взгляд, нельзя ожидать от этих стран быстрого экономического роста.

Производство электроэнергии на АЭС в 2008 году составило 2600 ТВт-ч, а к 2035 году, прогнозам, оно увеличится до 4900 ТВт-ч. В настоящее время растет не только производство электроэнергии на АЭС, но и их КИУМ: с 65% в 1990 году до 80% в настоящее время, что говорит о росте эффективности атомной энергетики. Рассматривая прирост мощностей АЭС, можно отметить, что странами, активно занимающимися развитием атомной энергетики, являются Китай, Индия и Россия. Мощности АЭС Китая с 2008 г. по 2035 г. вырастут почти в 13 раз (с 9 ГВт до 106 ГВт), Индии- почти в 7 раз (с 4,1 до 28 ГВт). Прирост мощностей АЭС в России за прогнозный период планируется в объеме 122% (с 23,2 ГВт в 2008 г.до 51,5 ГВт в 2035 г.).

Другим важным направлением производства электроэнергии являются ВИЭ. Производство электроэнергии на основе ВИЭ в настоящее время является одним из самых быстро развивающихся направлений электроэнергетики. Серьезным препятствием для строительства таких генерирующих мощностей является высокая стоимость проектов и их колебательный характер работы, однако это не останавливает страны перед развитием этого сектора электроэнергетики: темп прироста объемов произведенной электроэнергии на основе ВИЭ в прогнозном периоде планируется на уровне 3,1% в год. Из 4600 ТВт-ч прогнозируемой произведенной электроэнергии на основе ВИЭ к 2035 г. 55% будет произведено на ГЭС и 27% на ВЭС. В последние десять лет очень возросла важность энергии ветра: установленные мощности ВЭС выросли с 18 ГВт на 2001 г. до 121 ГВт в 2009. Очевидно, тенденция наращивания ветровых мощностей продолжится и в будущем. Правительства многих стран мира уже обнародовали меры, направленные на развитие возобновляемой энергетики. Евросоюз планирует, что в 2020 году на долю ВИЭ будет приходиться 20% всех объемов генерации; целью США является 10-20% производства из ВИЭ, тогда как Китай рассчитывает к 2020 году получать из них 100 ГВт энергии.

Даже в условиях кризиса и сокращения деятельности многих отраслей, производство электроэнергетики осталось практически на прежнем уровне, а в некоторых странах даже выросло. Электроэнергетика является важным разделом ТЭК любой страны и всего мира, и поэтому к 2035 г. ожидается увеличение объемов произведенной электроэнергии. С учетом описанных трендов мы также можем ожидать роста цен на электроэнергию.

8 ноября начала свою работу XХVI Международная научно-техническая конференция «Перспективы развития электроэнергетики и высоковольтного электротехнического оборудования. Коммутационные аппараты, преобразовательная техника, микропроцессорные системы управления и защиты «. Организатором конференции выступила Международная Ассоциация ТРАВЭК , при поддержке Российской академии наук , Академии электротехнических наук РФ , Министерства энергетики РФ , Министерства промышленности и торговли РФ , ПАО «Россети» , ПАО «ФСК ЕЭС» . RusCable.Ru – информационный партнёр мероприятия.

Как рассказал модератор конференции президент Международной Ассоциации ТРАВЭК, д.т.н. В.Д. Ковалев , участниками конференции по результатам работы будет принято решение, отражающее состояние и перспективы развития электроэнергетики и высоковольтного электротехнического оборудования, которое направляется в государственные структуры, ПАО «Россети», ПАО «ФСК ЕЭС» и другие организации РФ.

«Новый этап в развитии электротехнической промышленности отмечен новыми вызовами. Помимо продолжения реализации государственной политики импортозамещения, перед нами стоят новые задачи. Мы должны переходить на новый инновационный продукт. И прежде всего – это цифровизация электросетевого комплекса. Эти задачи ставят перед нами новые вызовы – создать инновационную технику, что обеспечит эту цифровизацию, обеспечить кибербезопасность новой техники. Таким образом, мы сейчас формируем и меры господдержки, которые направлены на решение этих задач. Хотел бы, чтобы в рамках конференции нашли ответы и такие вопросы. Есть более важные задачи, они определены в Национальной технологической инициативе – это формирование платформы EnergyNet, которая также в себя включает элементы цифровизации Smart Grid. И здесь я хочу отметить, что мы давно уже говорим об этих проблемах, хотелось бы уже, чтобы они переходили в практическую плоскость. Надеюсь, на сегодняшней конференции обсудят эти вопросы», – с таким приветственным словом выступил заместитель директора Департамента станкостроения и инвестиционного машиностроения Минпромторга России Олег Токарев .

На заседании Межведомственного координационного совета по вопросам развития энергетического машиностроения, электротехнической и кабельной промышленности были сформированы рабочие группы по различным отраслям для разработки «дорожных карт», направленных на качественное обновление электросетевого комплекса. Такую дорожную карту развития силовой электротехники до 2030 года на конференции представил главный инженер ПАО «Россети» Дмитрий Гвоздев . Цифровая интеллектуальная сеть – это сеть, которая в реальном времени отслеживает параметры и режимы работы всех участников процесса выработки, передачи и потребления электроэнергии. Получая обратную связь через разветвлённую систему датчиков в режиме online, интеллектуальная сеть автоматически реагирует на все изменения, происходящие в сети, принимая оптимальные решения для предотвращения аварий и осуществления энергоснабжения с максимальной надёжностью и экономической эффективностью. Функциональные требования интеллектуальной сети: учёт на всех уровнях; самодиагностика и способность к самовосстановлению после сбоев в подаче электроэнергии; снижение затрат на строительство и эксплуатацию; устойчивость сети к физическому и кибернетическому вмешательству злоумышленников; обеспечение требуемого качества передаваемой электроэнергии; обеспечение синхронной работы источников генерации и узлов хранения электроэнергии; возможность активного участия в работе сети потребителей; интеграция в сеть новых высокотехнологичных продуктов и предоставление новых электросетевых услуг на рынках.

К силовой электротехнике отнесли: трансформаторы, автотрансформаторы силовые; измерительные трансформаторы тока, трансформаторы напряжения; воздушные линии электропередачи; КРУЭ; выключатели; высоковольтные вводы; автоматизированные системы управления энергообъектом; оборудование для массового внедрения передач постоянного тока. Как рассказал г-н Гвоздев, к 2025 году в «Россетях» планируют построить цифровую сеть. И первым этапом должно быть оснащение всех элементов электротехники системой управления и сбора/передачи параметров работы в цифровом виде.

С футуристическим докладом «Энергоинформационные эргатические системы – будущее электроэнергетики» выступил генеральный директор Института энергетической стратегии Виталий Бушуев . Он представил эргатическую систему как человеко-машинную энергоинформационную систему производства и жизнедеятельности. Актуальными проблемами энергетики стали: количественный и качественный рост энергопотребления; новая техника генерации (ВИЭ) и транспорта (УВЛ и СПИН); энерго-информационная интеграция электрических систем; глобализация и регионализация энергетики; эргатические системы. Новая парадигма развития энергосистем – это энергосистема как интегратор многообразия потребителей и производителей электрической энергии. Обозначил докладчик и основные тренды развития электроэнергетических систем как переход к энергетическим системам нового поколения по 4-м основным направлениям: сочетание концентрированной и распределенной генерации; развитие технологий гибких связей межсистемного энергообъединения; развитие технологий накопления электроэнергии в энергосистеме; создание систем управления энергосистемой («умная энергосистема»).

Доклад «ЕЭС России в период до 2023 года: проблемы и перспективы» представила Евгения Сердюкова , начальник департамента перспективного развития сетей АО «Институт «ЭНЕРГОСЕТЬПРОЕКТ». Согласно анализу показателей, на период 2017-2023 гг. потребление электроэнергии в России будет расти, одновременно с ростом введенных мощностей. Так потребление электроэнергии вырастет с 1026,6 в 2016 году до 1101,04 млрд. кВт.ч в 2023 году. Максимальные электрические нагрузки вырастут 151,07 в 2016 до 164,598 тыс. МВт к 2023 году. Вывод из эксплуатации генерирующих мощностей составит 7,7 тыс. МВт, ввод в эксплуатацию – 18,9 тыс. МВт к 2023 году. Ввод трансформаторной мощности напряжением 220 кВ и выше за период 2017-2023 гг. составит 54,6 тыс.МВА, из них: 750 кВ – 3,0 тыс. МВА; 500 кВ – 14,6 тыс. МВА; 330 кВ – 4,8 тыс. МВА; 220 кВ – 32,2 тыс. МВА. Ввод линий электропередачи напряжением 220 кВ и выше за период 2017-2023 гг. составит 16,7 тыс. км, из них: 750 кВ – 0,6 тыс. км; 500 кВ – 3,0 тыс. км; 330 кВ – 2,2 тыс. км; 220 кВ – 10,9 тыс. км. Основные проблемы, решаемые при планировании перспективного развития ЕЭС: старение основного генерирующего и электросетевого оборудования (около 50% оборудования отработало 30 лет и более); ненадежное электроснабжение ряда потребителей; ограничения схем выдачи мощности отдельных электростанций; недостаточная пропускная способность межсистемных сечений.

В докладе «Интеграция энергетических систем» Заведующий отделением АО «ЭНИН» Валентин Баринов рассмотрел тенденции развития больших энергетических систем. Эволюция энергетических систем в мире идет в направлении объединения энергетических систем в комплексные интегрированные системы («супергриды»: региональные, межгосударственные или островные). И в условиях идущих процессов интеграции энергетических систем актуальным для России является решение следующих задач: определение ключевых направлений развития электроэнергетического комплекса страны и разработка системы целостного оптимального управления развитием и функционированием электроэнергетического комплекса страны в условиях наличия многих собственников электроэнергетических объектов с учетом различных временных и территориальных уровней управления и идущего в стране увеличения разнообразия источников генерации и компонентов энергосистем.

Павел Драчев , младший научный сотрудник Института систем энергетики им. Л.А. Мелентьева Сибирского отделения Российской академии наук, представил методику построения развития основной электрической сети. Это уже реализованная программа, которая позволяет сделать выбор концепции построения межсистемных ЛЭП (220 кВ и выше); определить перспективные объекты ЛЭП (5-15 лет) и их предварительной очередности их вводов и стоимости; обоснование присоединения систем, потребителей и узлов; выбрать класс напряжения, способы дальнего транзита электроэнергии и др.

С докладом «Организация комплексного процесса управления качеством электроэнергии - приоритетная задача энергетической стратегии развития России» выступил Валерий Воротницкий , АО «Научно-технический центр ФСК ЕЭС». Он указал, что в системе электроснабжения России в настоящее время существуют три наиболее существенные проблемы: качество электроэнергии в узлах присоединения потребителей, не в полной мере соответствующее нормативным требованиям, недостаточный уровень надёжности электроснабжения потребителей электроэнергии, присоединённых к распределительным электрическим сетям, завышенные потери электроэнергии. В своём выступлении г-н Воротницкий представил технические средства для повышения качество электроэнергии (такие как многофункциональные системы повышения КЭ и технологии: статические тиристорные компенсаторы реактивной мощности (СТК), статические компенсаторы реактивной мощности (СТАТКОМ), активные фильтро-симметрирующие устройства, вставки постоянного тока на преобразователях напряжения (ВПТН), системы FACTS.) и предложения по совершенствованию нормативной базы обеспечения надёжности, качества и экономичности.

Доклад «Обобщение тенденций развития и применения технологий передачи электроэнергии постоянным током (по материалам международного коллоквиума 2017 CIGRÉ A3, B4 & D1)» представила Ольга Суслова , АО «НТЦ ЕЭС». Докладчица выделила 2 мировые тенденции развития технологии передачи электроэнергии постоянным током с помощью линейно коммутируемых преобразователей тока: ППТ ультравысокого напряжения с ВЛ от 1500 до 3300 км и многотерминальные ППТ УВН.

Области применения объектов постоянного тока с преобразователями тока: передача электроэнергии по воздушным и воздушно-кабельным линиям напряжением от ±350 кВ ±1100 кВ пропускной способностью до 12 ГВт; связь несинхронно работающих энергообъединений через вставки постоянного тока; межгосударственные электропередачи коммерческого назначения; увеличение надежности энергоснабжения; компенсация суточных и сезонных колебаний генерируемых мощностей, выравнивание пиков нагрузки и потребления; передача электроэнергии через протяженные водные и наземные преграды. Области применения объектов постоянного тока с преобразователями напряжения: передача электроэнергии по кабельным воздушно-кабельным линиям напряжением ±500 кВ мощностью до 1,4 ГВт; связь несинхронно работающих энергообъединений через вставки постоянного тока; межгосударственные электропередачи коммерческого назначения; присоединение к энергосистемам генераторов с нестабильным уровнем генерации, зависящим от условий окружающей среды – возобновляемые источники энергии (ВИЭ) (ветропарки, солнечные, приливные и другие установки генераторов); надежное электроснабжение автономных нагрузок и изолированных энергосистем; энергоснабжение офшорных нефтяных и газовых платформ; регулирование реактивной мощности, улучшение качества напряжения в точках присоединения; создание многотерминальных электропередачи постоянного тока, сетей постоянного тока; компенсация суточных и сезонных колебаний генерируемых мощностей.

Полный список докладов можно увидеть на сайте . Сегодня пройдет второй день конференции, на котором рассмотрят уже конкретные новые разработки в области электротехники.

Роль энергетики определяется местом в экономике. ТЭК России - круп­нейший инфраструктурный комплекс.

Электроэнергетика играет в ТЭК ключевую роль, является в ней интег­рирующей подсистемой. Она выступает как преобразователь практически всех видов первичных топливно-энергетических ресурсов (ТЭР). Электроэнергети­ка - это наиболее удобный и универсальный энергоноситель для удовлетворе­ния производственных, социальных, бытовых и других энергетических по­требностей общества. Мировые тенденции таковы, что доля электроэнергии в потреблении ТЭР неуклонно возрастает и будет возрастать в дальнейшем. В стратегическом плане электроэнергетика решающим образом влияет на фор­мирование условий для подъема экономики России и укрепление ее экономи­ческой безопасности. Все это определяет исключительно важное значение электроэнергетики, ее нормального функционирования и развития для обеспе­чения энергетической и национальной безопасности России и ее регионов в экономическом, научно-техническом, внешнеэкономическом и других аспек-

Основу производственного потенциала российской электроэнергетики в настоящее время составляют более 700 электростанций общей мощностью свыше 200 ГВт и линии электропередачи всех классов напряжений протяжен­ностью около 2,5 млн. км. Более 90 % этого потенциала сосредоточено в Еди­ной энергетической системе (ЕЭС) России, являющейся уникальным техниче­ским комплексом, обеспечивающим электроснабжение потребителей на боль­шей части обжитой территории страны.

Функционирование и развитие ЕЭС России обеспечено богатейшими то­пливно-энергетическими ресурсами природного газа, нефти, угля, ядерного топлива, гидроэнергией и другими возобновляемыми источниками энергии. Настоящий период характеризуется накоплением проблем в электроэнергети­ке, от решения которых будет зависеть не только энергетическая, но и нацио­нальная безопасность страны в первой четверти XXI века.

В последние годы в электроэнергетике России неуклонно обостряется проблема физического и морального старения оборудования электростанций, тепловых и электрических сетей.

Темпы воспроизводства основных фондов в электроэнергетике резко снизились.

Объем капитальных вложений в 2001 году по сравнению с 1990 годом уменьшился в 3,1 раза, а ввод мощностей снизился в 4,6 раза.

Если на начало 1991 г. доля генерирующего оборудования, проработав­шего более 30 лет, составляла 13,3 % от суммарной установленной мощности ЕЭС России, то на конец 2000 г. она выросла более чем в три раза и составила 46,1 %. При существующих темпах демонтажа старого оборудования и ввода новых мощностей к 2010 г. выработает свой ресурс более 70 % генерирующего оборудования. Аналогичную картину представляет износ основных фондов электросетевого оборудования. Оставшиеся мощности уже к 2006 году не смо­гут обеспечить электропотребление соответствующее уровню 1998 года.

Наметившаяся минимальная тенденция роста в 2002 году потребления (рис. 1.1) еще более приблизит появление дефицита энергии.

В ближайшее время требуется провести работы по реновации 450 турбоустановок высокого давления, 746 котлов с рабочим давлением бо­лее 100 атмосфер, паропроводов общим весом свыше 20 тыс. тонн.

Старение оборудования и низкие темпы его реновации послужили при­чиной возникновения ряда проблем.

Одна из них - накопление изношенного оборудования. Следствием этого являются:

Рост затрат на его ремонт (до 200 %);

Ухудшение технико-экономических показателей работы электропред­приятий (удельных расходов топлива, расходов электроэнергии на соб­ственные нужды, потерь электроэнергии в сетях). В результате предпри­ятия РАО ""ЕЭС России" недополучают более 4 млрд. рублей в год;

Другой проблемой является недостаточность существующих источников финансирования, требуемым объемам реновации.

На период 2000-2005 гг. ежегодная потребность в финансовых ресурсах для выполнения требуемых объемов реновации основных фондов составляет 50 млрд. рублей.

В настоящее время финансирование работ по реновации электрообору­дования от имеющихся источников (амортизация и прибыль на инвестиции) составляет всего 50 % потребности. Следствием этого являются:

Недостаточный объем работ по реновации основных фондов;

Сокращение, замораживание НИОКР в области технического пере­вооружения;

Отсутствие новых конструкционных материалов для современных энер­гоустановок;

Отсутствие готовых к серийному выпуску образцов современного энер­гооборудования для замещения вырабатывающего ресурс по значитель­ной части мощностного ряда.

Для обеспечения потребности в энергии отраслей экономики и населе­ния страны, реализации перспективы экспорта электроэнергии, повышения эффективности энергопроизводства необходима работа по воспроизводству основных производственных фондов электроэнергетики в объемах, обеспечи­вающих необходимую рабочую мощность.

Приоритетным направлением является техническое перевооружение, при котором стоимость 1 кВт вводимой мощности на 30-50 % ниже, чем при новом строительстве.

Учитывая, что наработка части турбоагрегатов позволяет продлить ре­сурс на 30-50 тыс. часов, а также то, что в настоящее время отсутствуют тех­нологически отработанные, доведенные до промышленного применения об­
разцы энергоустановок, в которых применяются современные технологии, предлагается следующая схема реновации энергооборудования.

Приоритет работам по продлению срока службы энергоагрегатов и замене отработавших ресурс энергоустановок на аналогичные (с улучшенными характеристиками);

Технологическая отработка головных образцов энергоустановок, в которых применяются современные технологии.

Преимущественное внедрение современных технологий;

Сокращение объемов замены на аналогичное оборудование.

1. Проведение необходимых научно-исследовательских, опытно - конструкторских и проектных работ в области реновации.

2. Организацию разработки и внедрения мер и перспективных технологий по продлению ресурса энергооборудования.

3. Организацию разработки и внедрения современного энергооборудова­ния для замещения выработавшего ресурс.

Для ТЭС, работающих на газообразном топливе: бинарный парогазо­вый цикл или газотурбинные надстройки паросиловых агрегатов.

Для ТЭС, работающих на твердом топливе: сжигание топлива в котлах с циркулирующим кипящим слоем.

Для ТЭС, сжигающих любой вид органического топлива: паросиловые блоки, работающие с ультрасверхкритическими параметрами пара (с перспективными системами подогрева питательной воды, с современными материалами котлов и турбин и другими усовершенствованиями).

Предлагаемые конструкции должны иметь КПД не менее 45 %.

4. Определение базовых электростанций для отработки головных образцов энергооборудования.

5. Разработка и промышленное освоение производства новых конструк­ционных материалов.

Для реализации проектов современных энергоустановок требуются но­вые материалы, применение которых позволит:

Повысить показатели и соответственно увеличить КПД;

Снизить материалоемкость конструкций;

Увеличить ресурс работы оборудования;

Снизить эксплуатационные расходы за счет снижения объемов контроля металла.

6. Создание системы инжинирингового обеспечения реновации.

Реализация комплекса необходимых мер позволит:

Обеспечить надежное энергоснабжение потребителей России;

Увеличить экспорт электроэнергии;

Повысить эффективность энергопроизводства.

Мы должны готовить себя к энергетической революции - может быть, в XXI веке в энергетику придут термоядерные электростанции. Путь от идеи до массового внедрения занимает в энергетике примерно полвека. Первые опыты по термоядерному синтезу проведены в пятидесятые годы XX столетия. Так, может быть, начало нового тысячелетия принесет нам новые, экологически чистые термоядерные электростанции? Будем надеяться на это. Но все же традиционные методы получения энергии будут занимать основное место в энергетическом балансе. Поэтому задача ученых - усовершенствова­ние этих традиционных технологий, превращение их в экологически более чистые, экономичные.

Ученые считают, что преобразование облика энергетики XXI века будет определяться такими достижениями научно-технического прогресса, как кера­мические двигатели, высокотемпературная сверхпроводимость, плазменные технологии, новые атомные реакторы, новые, более эффективные способы сжигания угля и, наконец, возобновляемые источники энергии. В этих облас­тях науки и техники огромное поле деятельности для будущих ученых и ин­женеров.

Российская электроэнергетика оснащена отечественным оборудованием, располагает значительным экспортным потенциалом, обладает развитым на - учно-техническим отраслевым комплексом, квалифицированными научными и инженерными кадрами, способными осуществлять разработку и внедрение но­вых технологий и поступательное развитие отрасли.

Как известно, на данный период времени, перед отраслью стоит ряд проблем. Наиболее важной из которых является экологическая проблема. В России выброс вредных веществ в окружающую среду на единицу продукции превышает аналогичный показатель на западе в 6-10 раз. Так, В 2000 г. объемы выбросов вредных веществ в атмосферу составляли 3,9 млн тонн (98% к уровню 1999 г.), в том числе выбросы от ТЭС - 3,5 млн тонн (90%). На диоксид серы приходится до 40% общего объема выбросов, твердых веществ - 30%, оксидов азота - 24%. Таким образом, ТЭС являются главной причиной формирования кислотных осадков.

Крупнейшими загрязнителями атмосферы являются Рефтинская ГРЭС (г. Асбест, Свердловская обл.) -360 тыс. тонн, Новочеркасская (г. Новочеркасск, Ростовская обл.) - 122 тыс. тонн, Троицкая (г. Троицк-5, Челябинская обл.) - 103 тыс. тонн, Приморская (г. Лучегорск, Приморский край) - 77 тыс. тонн, Верхнетагильская ГРЭС (Свердловская обл.) - 72 тыс. тонн

Энергетика является и крупнейшим потребителем пресной и морской воды, расходуемой на охлаждение агрегатов и используемой в качестве носителя тепла. На долю отрасли приходится 77% общего объема свежей воды, использованной промышленностью России. Экстенсивное развитие производства, ускоренное наращивание огромных мощностей привело к тому, что на экологический фактор не уделялось достаточное количество внимания. После катастрофы на Чернобыльской АЭС под влиянием общественности в России были существенно приторможены темпы развития атомной энергетики. Конечно, это неудивительно. Ведь авария на этой станции (Украина, севернее Киева) 26 апреля 1986 года по долговременным последствиям стала самой масштабной катастрофой, которая произошла за весь исторический период существования человечества. Впервые сотни тысяч людей столкнулись с реальной опасностью “мирного атома”, неизбежностью возникновения чрезвычайной ситуации в условиях НТР, с неготовностью общества и государства к их предотвращению и сведению к минимуму их последствий.

Непосредственно после аварии общая площадь загрязнения составила 200 тысяч км.2. Площадь загрязнения, где устойчиво сохраняется повышенный уровень загрязнения- 10 тысяч км 2 . Здесь расположено около 640 населенных пунктов с населением свыше 230 тысяч человек. Радиоактивное загрязнение окружающей среды в пределах Украины, Белоруссии, некоторых областях России, остается крайне острой проблемой. Поэтому существовавшая ранее программа ускоренного достижения суммарной мощности АЭС в100 млн. квт (США уже достигли этого показателя) была фактически законсервирована. Огромные прямые убытки повлекло закрытие всех строившихся в России АЭС, станции, признанные зарубежными экспертами как вполне надежные, были заморожены даже в стадии монтажа оборудования. Однако последнее время положение меняется: в июне 93-го года был пущен четвертый энергоблок Балаковской АЭС, в ближайшие несколько лет планируется пуск еще нескольких атомных станций и дополнительных энергоблоков принципиально новой конструкции.

Таким образом, одной из немаловажных проблем энергетики является экологическая, которая непосредственно связана с использованием оборудования на электростанциях. Так, неправильное, небрежное обращение с техникой может привести к непредвиденным последствиям. На мой взгляд, государство должно в первую очередь уделять внимание именно этой проблеме, обеспечивать совершенную систему защиты всего населения от радиоактивных выбросов.

Другой нерешённой проблемой в сфере электроэнергетики является проблема использования устаревшего оборудования. Около одной пятой производственных фондов в электроэнергетике близки или превысили проектные сроки эксплуатации и требуют реконструкции или замены. Обновление оборудования, как известно, ведется недопустимо низкими темпами и в явно недостаточном объеме.

Следующей нерешённой проблемой электроэнергетики на данный момент стала проблема финансирования и развал хозяйственных связей.

Что же касается перспективы развития электроэнергетики России, то можно сделать вывод о том, что без нерешённых проблем процветание данной отрасли просто невозможно! На мой взгляд, правительство должно в первую очередь уделять внимание именно энергетике России, которая нуждается в выполнении определённых задач.

1. Снижение энергоемкости производства.

2. Сохранение единой энергосистемы России.

3. Повышение коэффициента используемой мощности э/с.

4. Полный переход к рыночным отношениям, освобождение цен на энергоносители, полный переход на мировые цены, возможный отказ от клиринга. 5. Скорейшее обновление парка э/с.

6. Приведение экологических параметров э/с к уровню мировых стандартов. На данный период времени для решения всех этих мер принята правительственная программа "Топливо и энергия", представляющая собой сборник конкретных рекомендаций по эффективному управлению отраслью и ее переходу от планово-административной к рыночной системе инвестирования.

Системными прогнозами развития всего электроэнергетического комплекса занимаются немногочисленные группы экспертов, которые разрабатывают так называемые «модели» всего ТЭК.

Так, структура производства электроэнергии по сценарию «Стратегия инерции» представлена на данном графике.

График №1.

При этом, эксперты считают, что инвестиции, требуемые для развития электрогенерации и электросетевого хозяйства до 2020 г. (с учетом компенсации выбывающих мощностей), составляют еще 457 млрд долл. в ценах 2005 г. (420 млрд долл., по оценкам Минпромэнерго). Таким образом, суммарно требуемые капитальные вложения в отечественный ТЭК в 2006-2020 гг. могут превысить 1 трлн долл. (I,12) При этом способность ТЭК мобилизовать подобные средства далеко не очевидна, особенно если иметь в виду возможное снижение цен на нефть и газ на мировых рынках и вероятность прихода частных инвесторов в электроэнергетику. В случае неудачи в электроэнергетике, «энергетический голод» будет обостряться, а темпы экономического роста замедлятся. Но даже успешная мобилизация таких огромных средств частично за счет отвлечения их из менее капиталоемких секторов экономики приведет к снижению темпов экономического роста и усилению перегрузки инвестиционного комплекса экономики, который ответит (и уже отвечает) удорожанием строительства единичной мощности.

Поэтому о процветании энергетики в России можно судить исходя из основных положений о том, каковы будут инвесторы и какое количество средств будет затрачено на развитие данной отрасли.

Выбор редакции
1.1 Отчет о движении продуктов и тары на производстве Акт о реализации и отпуске изделий кухни составляется ежед­невно на основании...

, Эксперт Службы Правового консалтинга компании "Гарант" Любой владелец участка – и не важно, каким образом тот ему достался и какое...

Индивидуальные предприниматели вправе выбрать общую систему налогообложения. Как правило, ОСНО выбирается, когда ИП нужно работать с НДС...

Теория и практика бухгалтерского учета исходит из принципа соответствия. Его суть сводится к фразе: «доходы должны соответствовать тем...
Развитие национальной экономики не является равномерным. Оно подвержено макроэкономической нестабильности , которая зависит от...
Приветствую вас, дорогие друзья! У меня для вас прекрасная новость – собственному жилью быть ! Да-да, вы не ослышались. В нашей стране...
Современные представления об особенностях экономической мысли средневековья (феодального общества) так же, как и времен Древнего мира,...
Продажа товаров оформляется в программе документом Реализация товаров и услуг. Документ можно провести, только если есть определенное...
Теория бухгалтерского учета. Шпаргалки Ольшевская Наталья 24. Классификация хозяйственных средств организацииСостав хозяйственных...